High-Capacity High-Power Thermal Energy Storage Using Solid-Solid Martensitic Transformations


الملخص بالإنكليزية

Adding thermal conductivity enhancements to increase thermal power in solid-liquid phase-change thermal energy storage modules compromises volumetric energy density and often times reduces the mass and volume of active phase change material (PCM) by well over half. In this study, a new concept of building thermal energy storage modules using high-conductivity, solid-solid, shape memory alloys is demonstrated to eliminate this trade-off and enable devices that have both high heat transfer rate and high thermal capacity. Nickel titanium, Ni50.28Ti49.36, was solution heat treated and characterized using differential scanning calorimetry and Xenon Flash to determine transformation temperature (78deg-C), latent heat (183 kJm-3), and thermal conductivity in the Austenite and Martensite phases (12.92/12.64 Wm-1K-1). Four parallel-plate thermal energy storage demonstrators were designed, fabricated, and tested in a thermofluidic test setup. These included a baseline sensible heating module (aluminum), a conventional solid-liquid PCM module (aluminum/1-octadecanol), an all-solid-solid PCM module (Ni50.28Ti49.36), and a composite solid-solid/solid-liquid PCM module (Ni50.28Ti49.36/1-octadecanol). By using high-conductivity solid-solid PCMs, and eliminating the need for encapsulants and conductivity enhancements, we are able to demonstrate a 1.73-3.38 times improvement in volumetric thermal capacity and a 2.03-3.21 times improvement in power density as compared to the conventional approaches. These experimental results are bolstered by analytical models to explain the observed heat transfer physics and reveal a 5.86 times improvement in thermal time constant. This work demonstrates the ability to build high-capacity and high-power thermal energy storage modules using multifunctional shape memory alloys and opens the door for leap ahead improvement in thermal energy storage performance.

تحميل البحث