ﻻ يوجد ملخص باللغة العربية
From a geometric perspective, the caustic is the most classical description of a wavefunction since its evolution is governed by the Hamilton-Jacobi equation. On the other hand, according to the Madelung-de Broglie-Bohm equations, the most classical description of a solution to the Schrodinger equation is given by the zeros of the Madelung-Bohm potential. In this work, we compare these descriptions and, by analyzing how the rays are organized over the caustic, we find that the wavefunctions with fold caustic are the most classical beams because the zeros of the Madelung-Bohm potential coincide with the caustic. For another type of beams, the Madelung-Bohm potential is in general distinct to zero over the caustic. We have verified these results for the one-dimensional Airy and Pearcey beams, which accordingly to the catastrophe theory, their caustics are stable. Finally, we remark that for certain cases, the zeros of the Madelung-Bohm potential are linked with the superoscillation phenomenon.
Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quant
A powerful hybrid FDTD--TDDFT method is used to study the interaction between classical plasmons of a gold bowtie nanoantenna and quantum plasmons of graphene nanoflakes (GNFs) placed in the narrow gap of the nanoantenna. Due to the hot-spot plasmon
Quantum optics and classical optics have coexisted for nearly a century as two distinct, self-consistent descriptions of light. What influences there were between the two domains all tended to go in one direction, as concepts from classical optics we
In this paper we show how to place Michael Berrys discovery of knotted zeros in the quantum states of hydrogen in the context of general knot theory and in the context of our formulations for quantum knots. Berry gave a time independent wave function
We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a c