ﻻ يوجد ملخص باللغة العربية
The current $3.7sigma$ discrepancy between the Standard Model prediction and the experimental value of the muon anomalous magnetic moment could be a hint for the existence of new physics. The hadronic light-by-light contribution is one of the pieces requiring improved precision on the theory side, and an important step is to derive short-distance constraints for this quantity containing four electromagnetic currents. Here, we derive such short-distance constraints for three large photon loop virtualities and the external fourth photon in the static limit. The static photon is considered as a background field and we construct a systematic operator product expansion in the presence of this field. We show that the massless quark loop, i.e. the leading term, is numerically dominant over non-perturbative contributions up to next-to-next-to leading order, both those suppressed by quark masses and those that are not.
The recent experimental measurement of the muon $g-2$ at Fermilab National Laboratory, at a $4.2sigma$ tension with the Standard Model prediction, highlights the need for further improvements on the theoretical uncertainties associated to the hadroni
The hadronic light-by-light contribution to the muon anomalous magnetic moment depends on an integration over three off-shell momenta squared ($Q_i^2$) of the correlator of four electromagnetic currents and the fourth leg at zero momentum. We derive
We derive short-distance constraints for the hadronic light-by-light contribution (HLbL) to the anomalous magnetic moment of the muon in the kinematic region where the three virtual momenta are all large. We include the external soft photon via an ex
We reanalyze the two-loop electroweak hadronic contributions to the muon g-2 that may be enhanced by large logarithms. The present evaluation is improved over those already existing in the literature by the implementation of the current algebra Ward
The short-distance behaviour of the hadronic light-by-light (HLbL) contribution to $(g-2)_{mu}$ has recently been studied by means of an operator product expansion in a background electromagnetic field. The leading term in this expansion has been sho