ترغب بنشر مسار تعليمي؟ اضغط هنا

Short-distance HLbL contributions to the muon g-2

199   0   0.0 ( 0 )
 نشر من قبل Nils Hermansson-Truedsson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The current $3.7sigma$ discrepancy between the Standard Model prediction and the experimental value of the muon anomalous magnetic moment could be a hint for the existence of new physics. The hadronic light-by-light contribution is one of the pieces requiring improved precision on the theory side, and an important step is to derive short-distance constraints for this quantity containing four electromagnetic currents. Here, we derive such short-distance constraints for three large photon loop virtualities and the external fourth photon in the static limit. The static photon is considered as a background field and we construct a systematic operator product expansion in the presence of this field. We show that the massless quark loop, i.e. the leading term, is numerically dominant over non-perturbative contributions up to next-to-next-to leading order, both those suppressed by quark masses and those that are not.



قيم البحث

اقرأ أيضاً

The recent experimental measurement of the muon $g-2$ at Fermilab National Laboratory, at a $4.2sigma$ tension with the Standard Model prediction, highlights the need for further improvements on the theoretical uncertainties associated to the hadroni c sector. In the framework of the operator product expansion in the presence of a background field, the short-distance behaviour of the hadronic light-by-light contribution was recently studied. The leading term in this expansion is given by the massless quark-loop, which is numerically dominant compared to non-perturbative corrections. Here, we present the perturbative QCD correction to the massless quark-loop and estimate its size numerically. In particular, we find that for scales above 1 GeV it is relatively small, in general roughly $-10%$ the size of the massless quark-loop. The knowledge of these short-distance constraints will in the future allow to reduce the systematic uncertainties in the Standard Model prediction of the hadronic light-by-light contribution to the $g-2$.
65 - Johan Bijnens 2020
The hadronic light-by-light contribution to the muon anomalous magnetic moment depends on an integration over three off-shell momenta squared ($Q_i^2$) of the correlator of four electromagnetic currents and the fourth leg at zero momentum. We derive the short-distance expansion of this correlator in the limit where all three $Q_i^2$ are large and in the Euclidean domain in QCD. This is done via a systematic operator product expansion (OPE) in a background field which we construct. The leading order term in the expansion is the massless quark loop. We also compute the non-perturbative part of the next-to-leading contribution, which is suppressed by quark masses, and the chiral limit part of the next-to-next-to leading contributions to the OPE. We build a renormalisation program for the OPE. The numerical role of the higher-order contributions is estimated and found to be small.
We derive short-distance constraints for the hadronic light-by-light contribution (HLbL) to the anomalous magnetic moment of the muon in the kinematic region where the three virtual momenta are all large. We include the external soft photon via an ex ternal field leading to a well-defined Operator Product Expansion. We establish that the perturbative quark loop gives the leading contribution in a well defined expansion. We compute the first nonzero power correction. It is related to to the magnetic susceptibility of the QCD vacuum. The results can be used as model-independent short-distance constraints for the very many different approaches to the HLbL contribution. Numerically the power correction is found to be small.
338 - M. Knecht 2002
We reanalyze the two-loop electroweak hadronic contributions to the muon g-2 that may be enhanced by large logarithms. The present evaluation is improved over those already existing in the literature by the implementation of the current algebra Ward identities and the inclusion of the correct short-distance QCD behaviour of the relevant hadronic Greens function.
The short-distance behaviour of the hadronic light-by-light (HLbL) contribution to $(g-2)_{mu}$ has recently been studied by means of an operator product expansion in a background electromagnetic field. The leading term in this expansion has been sho wn to be given by the massless quark loop, and the non-perturbative corrections are numerically very suppressed. Here, we calculate the perturbative QCD correction to the massless quark loop. The correction is found to be fairly small compared to the quark loop as far as we study energy scales where the perturbative running for the QCD coupling is well-defined, i.e.~for scales $mugtrsim 1, mathrm{GeV}$. This should allow to reduce the large systematic uncertainty associated to high-multiplicity hadronic states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا