ﻻ يوجد ملخص باللغة العربية
We present the Apache Point Observatory BG40 broadband and simultaneous Gemini $r$-band and $i$-band high-speed follow-up photometry observations and analysis of the 40.5 minute period eclipsing detached double-degenerate binary SDSS J082239.54$+$304857.19. Our APO data spans over 318 days and includes 13 primary eclipses, from which we precisely measure the systems orbital period and improve the time of mid-eclipse measurement. We fit the light curves for each filter individually and show that this system contains a low-mass DA white dwarf with radius $R_A=0.031pm0.006~{rm R_odot}$ and a $R_B=0.013pm0.005~{rm R_odot}$ companion at an inclination of $i=87.7pm0.2^circ$. We use the best-fitting eclipsing light curve model to estimate the temperature of the secondary star as $T_{rm eff}=5200pm100~{rm K}$. Finally, while we do not record significant offsets to the expected time of mid-eclipse caused by the emission of gravitational waves with our 1-year baseline, we show that a $3sigma$ significant measurement of the orbital decay due to gravitational waves will be possible in 2023, at which point the eclipse will occur about $8$ seconds earlier than expected.
We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just $8.8$ minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass
With orbital periods of the order of tens of minutes or less, the AM Canum Venaticorum stars are ultracompact, hydrogen deficient binaries with the shortest periods of any binary subclass, and are expected to be among the strongest gravitational wave
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NS
We report the discovery of SDSS J133725.26+395237.7 (hereafter SDSS J1337+3952), a double-lined white dwarf (WD+WD) binary identified in early data from the fifth generation Sloan Digital Sky Survey (SDSS-V). The double-lined nature of the system ena
General relativity predicts that short orbital period binaries emit significant gravitational radiation, and the upcoming Laser Interferometer Space Antenna (LISA) is expected to detect tens of thousands of such systems; however, few have been identi