ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling Wide Residual Networks for Panoptic Segmentation

76   0   0.0 ( 0 )
 نشر من قبل Liang-Chieh Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Wide Residual Networks (Wide-ResNets), a shallow but wide model variant of the Residual Networks (ResNets) by stacking a small number of residual blocks with large channel sizes, have demonstrated outstanding performance on multiple dense prediction tasks. However, since proposed, the Wide-ResNet architecture has barely evolved over the years. In this work, we revisit its architecture design for the recent challenging panoptic segmentation task, which aims to unify semantic segmentation and instance segmentation. A baseline model is obtained by incorporating the simple and effective Squeeze-and-Excitation and Switchable Atrous Convolution to the Wide-ResNets. Its network capacity is further scaled up or down by adjusting the width (i.e., channel size) and depth (i.e., number of layers), resulting in a family of SWideRNets (short for Scaling Wide Residual Networks). We demonstrate that such a simple scaling scheme, coupled with grid search, identifies several SWideRNets that significantly advance state-of-the-art performance on panoptic segmentation datasets in both the fast model regime and strong model regime.



قيم البحث

اقرأ أيضاً

In this paper, we present a conceptually simple, strong, and efficient framework for panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a unified fully convolutional pipeli ne. In particular, Panoptic FCN encodes each object instance or stuff category into a specific kernel weight with the proposed kernel generator and produces the prediction by convolving the high-resolution feature directly. With this approach, instance-aware and semantically consistent properties for things and stuff can be respectively satisfied in a simple generate-kernel-then-segment workflow. Without extra boxes for localization or instance separation, the proposed approach outperforms previous box-based and -free models with high efficiency on COCO, Cityscapes, and Mapillary Vistas datasets with single scale input. Our code is made publicly available at https://github.com/Jia-Research-Lab/PanopticFCN.
In this paper, we present a conceptually simple, strong, and efficient framework for fully- and weakly-supervised panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a unifi ed fully convolutional pipeline, which can be optimized with point-based fully or weak supervision. In particular, Panoptic FCN encodes each object instance or stuff category with the proposed kernel generator and produces the prediction by convolving the high-resolution feature directly. With this approach, instance-aware and semantically consistent properties for things and stuff can be respectively satisfied in a simple generate-kernel-then-segment workflow. Without extra boxes for localization or instance separation, the proposed approach outperforms the previous box-based and -free models with high efficiency. Furthermore, we propose a new form of point-based annotation for weakly-supervised panoptic segmentation. It only needs several random points for both things and stuff, which dramatically reduces the annotation cost of human. The proposed Panoptic FCN is also proved to have much superior performance in this weakly-supervised setting, which achieves 82% of the fully-supervised performance with only 20 randomly annotated points per instance. Extensive experiments demonstrate the effectiveness and efficiency of Panoptic FCN on COCO, VOC 2012, Cityscapes, and Mapillary Vistas datasets. And it sets up a new leading benchmark for both fully- and weakly-supervised panoptic segmentation. Our code and models are made publicly available at https://github.com/dvlab-research/PanopticFCN
Panoptic segmentation has become a new standard of visual recognition task by unifying previous semantic segmentation and instance segmentation tasks in concert. In this paper, we propose and explore a new video extension of this task, called video p anoptic segmentation. The task requires generating consistent panoptic segmentation as well as an association of instance ids across video frames. To invigorate research on this new task, we present two types of video panoptic datasets. The first is a re-organization of the synthetic VIPER dataset into the video panoptic format to exploit its large-scale pixel annotations. The second is a temporal extension on the Cityscapes val. set, by providing new video panoptic annotations (Cityscapes-VPS). Moreover, we propose a novel video panoptic segmentation network (VPSNet) which jointly predicts object classes, bounding boxes, masks, instance id tracking, and semantic segmentation in video frames. To provide appropriate metrics for this task, we propose a video panoptic quality (VPQ) metric and evaluate our method and several other baselines. Experimental results demonstrate the effectiveness of the presented two datasets. We achieve state-of-the-art results in image PQ on Cityscapes and also in VPQ on Cityscapes-VPS and VIPER datasets. The datasets and code are made publicly available.
Our goal is to forecast the near future given a set of recent observations. We think this ability to forecast, i.e., to anticipate, is integral for the success of autonomous agents which need not only passively analyze an observation but also must re act to it in real-time. Importantly, accurate forecasting hinges upon the chosen scene decomposition. We think that superior forecasting can be achieved by decomposing a dynamic scene into individual things and background stuff. Background stuff largely moves because of camera motion, while foreground things move because of both camera and individual object motion. Following this decomposition, we introduce panoptic segmentation forecasting. Panoptic segmentation forecasting opens up a middle-ground between existing extremes, which either forecast instance trajectories or predict the appearance of future image frames. To address this task we develop a two-component model: one component learns the dynamics of the background stuff by anticipating odometry, the other one anticipates the dynamics of detected things. We establish a leaderboard for this novel task, and validate a state-of-the-art model that outperforms available baselines.
Panoptic segmentation is posed as a new popular test-bed for the state-of-the-art holistic scene understanding methods with the requirement of simultaneously segmenting both foreground things and background stuff. The state-of-the-art panoptic segmen tation network exhibits high structural complexity in different network components, i.e. backbone, proposal-based foreground branch, segmentation-based background branch, and feature fusion module across branches, which heavily relies on expert knowledge and tedious trials. In this work, we propose an efficient, cooperative and highly automated framework to simultaneously search for all main components including backbone, segmentation branches, and feature fusion module in a unified panoptic segmentation pipeline based on the prevailing one-shot Network Architecture Search (NAS) paradigm. Notably, we extend the common single-task NAS into the multi-component scenario by taking the advantage of the newly proposed intra-modular search space and problem-oriented inter-modular search space, which helps us to obtain an optimal network architecture that not only performs well in both instance segmentation and semantic segmentation tasks but also be aware of the reciprocal relations between foreground things and background stuff classes. To relieve the vast computation burden incurred by applying NAS to complicated network architectures, we present a novel path-priority greedy search policy to find a robust, transferrable architecture with significantly reduced searching overhead. Our searched architecture, namely Auto-Panoptic, achieves the new state-of-the-art on the challenging COCO and ADE20K benchmarks. Moreover, extensive experiments are conducted to demonstrate the effectiveness of path-priority policy and transferability of Auto-Panoptic across different datasets. Codes and models are available at: https://github.com/Jacobew/AutoPanoptic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا