For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining linear equations in period coordinates for $M$ near its boundary, and prove that the closure is locally a toric variety. As applications, we give a fundamentally new proof of a generalization of the cylinder deformation theorem of Wright to the case of meromorphic strata, and construct a smooth compactification of the Hurwitz space of covers of the Riemann sphere.