ترغب بنشر مسار تعليمي؟ اضغط هنا

Unraveling the origin of magnetic fields in galaxies

116   0   0.0 ( 0 )
 نشر من قبل Sergio Martin-Alvarez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out if magnetic fields observed in galaxies were generated in the Early Universe or are of astrophysical nature. Motivated by this we use our magnetic tracers algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy in four scenarios: magnetised solely by primordial magnetic fields, magnetised exclusively by SN-injected magnetic fields, and two combined primordial + SN magnetisation cases. We find that once primordial magnetic fields with a comoving strength $B_0 >10^{-12}$ G are considered, they remain the primary source of galaxy magnetisation. Our magnetic tracers show that, even combined with galactic sources of magnetisation, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic and intergalactic medium can be used to probe $B_0$ without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically-sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.



قيم البحث

اقرأ أيضاً

As one of the prime contributors to the interstellar medium energy budget, magnetic fields naturally play a part in shaping the evolution of galaxies. Galactic magnetic fields can originate from strong primordial magnetic fields provided these latter remain below current observational upper limits. To understand how such magnetic fields would affect the global morphological and dynamical properties of galaxies, we use a suite of high-resolution constrained transport magneto-hydrodynamic cosmological zoom simulations where we vary the initial magnetic field strength and configuration along with the prescription for stellar feedback. We find that strong primordial magnetic fields delay the onset of star formation and drain the rotational support of the galaxy, diminishing the radial size of the galactic disk and driving a higher amount of gas towards the centre. This is also reflected in mock UVJ observations by an increase in the light profile concentration of the galaxy. We explore the possible mechanisms behind such a reduction in angular momentum, focusing on magnetic braking. Finally, noticing that the effects of primordial magnetic fields are amplified in the presence of stellar feedback, we briefly discuss whether the changes we measure would also be expected for galactic magnetic fields of non-primordial origin.
243 - James McBride 2013
We present estimates of magnetic field strengths in the interstellar media of starburst galaxies derived from measurements of Zeeman splitting associated with OH megamasers. The results for eight galaxies with Zeeman detections suggest that the magne tic energy density in the interstellar medium of starburst galaxies is comparable to their hydrostatic gas pressure, as in the Milky Way. We discuss the significant uncertainties in this conclusion, and possible measurements that could reduce these uncertainties. We also compare the Zeeman splitting derived magnetic field estimates to magnetic field strengths estimated using synchrotron fluxes and assuming that the magnetic field and cosmic rays have comparable energy densities, known as the minimum energy argument. We find that the minimum energy argument systematically underestimates magnetic fields in starburst galaxies, and that the conditions that would be required to produce agreement between the minimum energy estimate and the Zeeman derived estimate of interstellar medium magnetic fields are implausible. The conclusion that magnetic fields in starburst galaxies exceed the minimum energy magnetic fields is consistent with starburst galaxies adhering to the linearity of the FIR-radio correlation.
Fluctuation dynamos are thought to play an essential role in magnetized galaxy evolution, saturating within $sim0.01~$Gyr and thus potentially acting as seeds for large-scale dynamos. However, unambiguous observational confirmation of the fluctuation dynamo action in a galactic environment is still missing. This is because, in spiral galaxies, it is difficult to differentiate between small-scale magnetic fields generated by a fluctuation dynamo and those due to the tangling of the large-scale field. We propose that observations of magnetic fields in elliptical galaxies would directly probe the fluctuation dynamo action. This is motivated by the fact that in ellipticals, due to their lack of significant rotation, the conventional large-scale dynamo is absent and the fluctuation dynamo is responsible for controlling the magnetic field strength and structure. By considering turbulence injected by Type Ia supernova explosions and possible magnetic field amplification by cooling flows, we estimate expected magnetic field strengths of $0.2~-~1 ,mu{rm G}$ in quiescent elliptical galaxies. We use a semi-analytic model of galaxy formation to estimate the distribution and redshift evolution of field strengths, tentatively finding a decrease in magnetic field strength with decreasing redshift. We analyse a sample of radio sources that exhibit the Laing-Garrington (LG) effect (radio polarization asymmetry in jets) and infer magnetic field strengths between $0.14~-~1.33 ,mu{rm G}$ for a uniform thermal electron density and between $1.36~-~6.21,mu{rm G}$ for the thermal electron density following the King profile. We examine observational techniques for measuring the magnetic field saturation state in elliptical galaxies, focusing on Faraday RM grids, the LG effect, synchrotron emission, and gravitational lensing, finding appealing prospects for future empirical analysis.
Giant radio galaxies (GRGs) are physically large radio sources that extend well beyond their host galaxy environment. Their polarization properties are affected by the poorly constrained magnetic field that permeates the intergalactic medium on Mpc s cales. A low frequency ($<$ 200 MHz) polarization study of this class of radio sources is now possible with LOFAR. Here we investigate the polarization properties and Faraday rotation measure (RM) of a catalog of GRGs detected in the LoTSS. This is the first low-frequency polarization study of a large sample of radio galaxies selected on their physical size. We explore the magneto-ionic properties of their under-dense environment and probe intergalactic magnetic fields using the Faraday rotation properties of their radio lobes. We use RM synthesis in the 120-168 MHz band to search for polarized emission and to derive the RM and fractional polarization of each detected source component. We study the depolarization between 1.4 GHz and 144 MHz using images from the NVSS. From a sample of 240 GRGs, we detected 37 sources in polarization, all with a total flux density above 56 mJy. The fractional polarization of the detected GRGs at 1.4 GHz and 144 MHz is consistent with a small amount of Faraday depolarization (a Faraday dispersion $<$ 0.3 rad m$^{-2}$). Our analysis shows that the lobes are expanding into a low-density ($<10^{-5}$ cm$^{-3}$) local environment permeated by weak magnetic fields ($<$0.1 $mu$G) with fluctuations on scales of 3 to 25 kpc. The presence of foreground galaxy clusters appears to influence the polarization detection rate up to 2R$_{500}$. In general, this work demonstrates the ability of LOFAR to quantify the rarefied environments in which these GRGs exist and highlights them as an excellent statistical sample to use as high precision probes of magnetic fields in the intergalactic medium and the Milky Way.
Magnetic fields are an important ingredient of the interstellar medium (ISM). Besides their importance for star formation, they govern the transport of cosmic rays, relevant to the launch and regulation of galactic outflows and winds, which in turn a re pivotal in shaping the structure of halo magnetic fields. Mapping the small-scale structure of interstellar magnetic fields in many nearby galaxies is crucial to understand the interaction between gas and magnetic fields, in particular how gas flows are affected. Elucidation of the magnetic role in, e.g., triggering star formation, forming and stabilising spiral arms, driving outflows, gas heating by reconnection and magnetising the intergalactic medium has the potential to revolutionise our physical picture of the ISM and galaxy evolution in general. Radio polarisation observations in the very nearest galaxies at high frequencies (>= 3 GHz) and with high spatial resolution (<= 5) hold the key here. The galaxy survey with SKA1 that we propose will also be a major step to understand the galactic dynamo, which is important for models of galaxy evolution and for astrophysical magnetohydrodynamics in general. Field amplification by turbulent gas motions, which is crucial for efficient dynamo action, has been investigated so far only in simulations, while compelling evidence of turbulent fields from observations is still lacking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا