ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of some cardiovascular risk factors on the rela-tionship between age and blood pressure

236   0   0.0 ( 0 )
 نشر من قبل Giulia Silveri Mss
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Blood Pressure (BP) is a biological signal related to the cardiovascular system that inevitably is affected by ageing. Moreover, it is also influenced by the presence of cardiovascular risk factors. To evaluate how the relationship be-tween BP and age changes with the presence of risk factors in hypertensive and normotensive subjects, we analyzed 880 subjects with and without smoking, obe-sity, diabetes mellitus and dyslipidemia. A regression line fitted each BP/Age relation calculated separately for normotensive and hypertensive subjects with and without risk factors. For each of the four conditions the office and the 24-hour ambulatory BP monitoring (ABPM) were considered. In subjects with and without risk factors, the slopes of the Systolic BP/Age relation were higher in hypertensive than in normotensive subjects in both office and ABPM conditions. Moreover, the presence of risk factors modified the Systolic BP/Age relation in hypertensive subjects by using either office or ABPM measurements. Finally, we confirmed that the difference between the two modalities depends on age too.



قيم البحث

اقرأ أيضاً

Blood Pressure (BP) and Heart Rate (HR) provide information on clin-ical condition along 24h. Both signals present circadian changes due to sympa-thetic/parasympathetic control system that influence the relationship between them. Moreover, also the g ender could modify this relation, acting on both con-trol systems. Some studies, using office measurements examined the BP/HR re-lation, highlighting a direct association between the two variables, linked to sus-pected coronary heart disease. Nevertheless, till now such relation has not been studied yet using ambulatory technique that is known to lead to additional prog-nostic information about cardiovascular risks. In order to examine in a more ac-curate way this relation, in this work we evaluate the influence of gender on the BP/HR relationship by using hour-to-hour 24h ambulatory measurements. Data coming from 122 female and 50 male normotensive subjects were recorded using a Holter Blood Pressure Monitor and the parameters of the linear regression fit-ting BP/HR were calculated. Results confirmed those obtained in previous stud-ies using punctual office measures in males and underlined a significant relation between Diastolic BP and HR during each hour of the day in females; a different trend in the BP/HR relation between genders was found only during night-time. Moreover, the circadian rhythm of BP/HR is similar in both genders but with different values of HR and BP at different times of the day.
An analysis of a variety of existing experimental data leads to the conclusion on the existence of a resonance mechanism allowing weak magnetic fields to affect biological processes. These fields may either be static magnetic fields comparable in mag nitude with the magnetic field of the earth or weak ultra-low frequency time-dependent fields. So far, a generally accepted theoretical model allowing one to understand the effect of magnetic and electric fields on biological processes is not available. By this reason, it is not clear which characteristics of the fields, like magnetic and electric field strength, frequency of change of the field, shape of the electromagnetic wave, the duration of the magnetic or electric influence or some particular combination of them, are responsible for the biological effect. In the present analysis it is shown that external time-independent magnetic fields may cause a resonance amplification of ionic electric currents in biological tissues and, in particular, in the vasculature system due to a Brownian motion of charges. These resonance electric currents may cause necrotic changes in the tissues or blood circulation and in this way significantly affect the biological organism. The magnitude of the magnetic fields leading to resonance effects is estimated, it is shown that it depends significantly on the radius of the blood capillaries.
The accurate measurement of blood pressure (BP) is an important prerequisite for the reliable diagnosis and efficient management of hypertension and other medical conditions. Office Blood Pressure Measurement (OBP) is a technique performed in-office with the sphygmomanometer, while Ambulatory Blood Pressure Monitoring (ABPM) is a technique that measures blood pressure during 24h. The BP fluctuations also depend on other factors such as physical activity, temperature, mood, age, sex, any pathologies, a hormonal activity that may intrinsically influence the differences between OBP and ABPM. The aim of this study is to examine the possible influence of sex on the discrepancies between OBP and ABPM in 872 subjects with known or suspected hypertension. A significant correlation was observed between OBP and ABPM mean values calculated during the day, night and 24h (ABPMday, ABPMnight, ABPM24h) in both groups (p<0.0001). The main finding of this study is that no difference between sexes was observed in the relation between OBP and mean ABMP values except between systolic OBP and systolic ABPM during the night. In addition, this study showed a moderate correlation between BPs obtained with the two approaches with a great dispersion around the regression line which suggests that the two approaches cannot be used interchangeably.
Three-dimensional cardiovascular fluid dynamics simulations typically require computation of several cardiac cycles before they reach a periodic solution, rendering them computationally expensive. Furthermore, there is currently no standardized metho d to determine whether a simulation has yet reached that periodic state. In this work, we propose use of the asymptotic error measure to quantify the difference between simulation results and their ideal periodic state using lumped-parameter modeling. We further show that initial conditions are crucial in reducing computational time and develop an automated framework to generate appropriate initial conditions from a one-dimensional model of blood flow. We demonstrate the performance of our initialization method using six patient-specific models from the Vascular Model Repository. In our examples, our initialization protocol achieves periodic convergence within one or two cardiac cycles, leading to a significant reduction in computational cost compared to standard methods. All computational tools used in this work are implemented in the open-source software platform SimVascular. Automatically generated initial conditions have the potential to significantly reduce computation time in cardiovascular fluid dynamics simulations.
Traditionally, medical discoveries are made by observing associations and then designing experiments to test these hypotheses. However, observing and quantifying associations in images can be difficult because of the wide variety of features, pattern s, colors, values, shapes in real data. In this paper, we use deep learning, a machine learning technique that learns its own features, to discover new knowledge from retinal fundus images. Using models trained on data from 284,335 patients, and validated on two independent datasets of 12,026 and 999 patients, we predict cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as such as age (within 3.26 years), gender (0.97 AUC), smoking status (0.71 AUC), HbA1c (within 1.39%), systolic blood pressure (within 11.23mmHg) as well as major adverse cardiac events (0.70 AUC). We further show that our models used distinct aspects of the anatomy to generate each prediction, such as the optic disc or blood vessels, opening avenues of further research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا