ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic Interaction of Particles for Robotic Tactile Simulation

104   0   0.0 ( 0 )
 نشر من قبل Yikai Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tactile sensing plays an important role in robotic perception and manipulation. To overcome the real-world limitations of data collection, simulating tactile response in virtual environment comes as a desire direction of robotic research. Most existing works model the tactile sensor as a rigid multi-body, which is incapable of reflecting the elastic property of the tactile sensor as well as characterizing the fine-grained physical interaction between two objects. In this paper, we propose Elastic Interaction of Particles (EIP), a novel framework for tactile emulation. At its core, EIP models the tactile sensor as a group of coordinated particles, and the elastic theory is applied to regulate the deformation of particles during the contact process. The implementation of EIP is conducted from scratch, without resorting to any existing physics engine. Experiments to verify the effectiveness of our method have been carried out on two applications: robotic perception with tactile data and 3D geometric reconstruction by tactile-visual fusion. It is possible to open up a new vein for robotic tactile simulation, and contribute to various downstream robotic tasks.



قيم البحث

اقرأ أيضاً

Tactile sensing plays an important role in robotic perception and manipulation tasks. To overcome the real-world limitations of data collection, simulating tactile response in a virtual environment comes as a desirable direction of robotic research. In this paper, we propose Elastic Interaction of Particles (EIP) for tactile simulation. Most existing works model the tactile sensor as a rigid multi-body, which is incapable of reflecting the elastic property of the tactile sensor as well as characterizing the fine-grained physical interaction between the two objects. By contrast, EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact. With the tactile simulation by EIP, we further propose a tactile-visual perception network that enables information fusion between tactile data and visual images. The perception network is based on a global-to-local fusion mechanism where multi-scale tactile features are aggregated to the corresponding local region of the visual modality with the guidance of tactile positions and directions. The fusion method exhibits superiority regarding the 3D geometric reconstruction task.
Tactile sensing is critical for robotic grasping and manipulation of objects under visual occlusion. However, in contrast to simulations of robot arms and cameras, current simulations of tactile sensors have limited accuracy, speed, and utility. In t his work, we develop an efficient 3D finite element method (FEM) model of the SynTouch BioTac sensor using an open-access, GPU-based robotics simulator. Our simulations closely reproduce results from an experimentally-validated model in an industry-standard, CPU-based simulator, but at 75x the speed. We then learn latent representations for simulated BioTac deformations and real-world electrical output through self-supervision, as well as projections between the latent spaces using a small supervised dataset. Using these learned latent projections, we accurately synthesize real-world BioTac electrical output and estimate contact patches, both for unseen contact interactions. This work contributes an efficient, freely-accessible FEM model of the BioTac and comprises one of the first efforts to combine self-supervision, cross-modal transfer, and sim-to-real transfer for tactile sensors.
Purpose Surgical simulations play an increasingly important role in surgeon education and developing algorithms that enable robots to perform surgical subtasks. To model anatomy, Finite Element Method (FEM) simulations have been held as the gold stan dard for calculating accurate soft-tissue deformation. Unfortunately, their accuracy is highly dependent on the simulation parameters, which can be difficult to obtain. Methods In this work, we investigate how live data acquired during any robotic endoscopic surgical procedure may be used to correct for inaccurate FEM simulation results. Since FEMs are calculated from initial parameters and cannot directly incorporate observations, we propose to add a correction factor that accounts for the discrepancy between simulation and observations. We train a network to predict this correction factor. Results To evaluate our method, we use an open-source da Vinci Surgical System to probe a soft-tissue phantom and replay the interaction in simulation. We train the network to correct for the difference between the predicted mesh position and the measured point cloud. This results in 15-30% improvement in the mean distance, demonstrating the effectiveness of our approach across a large range of simulation parameters. Conclusion We show a first step towards a framework that synergistically combines the benefits of model-based simulation and real-time observations. It corrects discrepancies between simulation and the scene that results from inaccurate modeling parameters. This can provide a more accurate simulation environment for surgeons and better data with which to train algorithms.
In robots, nonprehensile manipulation operations such as pushing are a useful way of moving large, heavy or unwieldy objects, moving multiple objects at once, or reducing uncertainty in the location or pose of objects. In this study, we propose a rea ctive and adaptive method for robotic pushing that uses rich feedback from a high-resolution optical tactile sensor to control push movements instead of relying on analytical or data-driven models of push interactions. Specifically, we use goal-driven tactile exploration to actively search for stable pushing configurations that cause the object to maintain its pose relative to the pusher while incrementally moving the pusher and object towards the target. We evaluate our method by pushing objects across planar and curved surfaces. For planar surfaces, we show that the method is accurate and robust to variations in initial contact position/angle, object shape and start position; for curved surfaces, the performance is degraded slightly. An immediate consequence of our work is that it shows that explicit models of push interactions might be sufficient but are not necessary for this type of task. It also raises the interesting question of which aspects of the system should be modelled to achieve the best performance and generalization across a wide range of scenarios. Finally, it highlights the importance of testing on non-planar surfaces and in other more complex environments when developing new methods for robotic pushing.
In this work, we report on the integrated sensorimotor control of the Pisa/IIT SoftHand, an anthropomorphic soft robot hand designed around the principle of adaptive synergies, with the BRL tactile fingertip (TacTip), a soft biomimetic optical tactil e sensor based on the human sense of touch. Our focus is how a sense of touch can be used to control an anthropomorphic hand with one degree of actuation, based on an integration that respects the hands mechanical functionality. We consider: (i) closed-loop tactile control to establish a light contact on an unknown held object, based on the structural similarity with an undeformed tactile image; and (ii) controlling the estimated pose of an edge feature of a held object, using a convolutional neural network approach developed for controlling other sensors in the TacTip family. Overall, this gives a foundation to endow soft robotic hands with human-like touch, with implications for autonomous grasping, manipulation, human-robot interaction and prosthetics. Supplemental video: https://youtu.be/ndsxj659bkQ
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا