ﻻ يوجد ملخص باللغة العربية
We prove higher Sobolev regularity for bounded weak solutions to a class of nonlinear nonlocal integro-differential equations. The leading operator exhibits nonuniform growth, switching between two different fractional elliptic ``phases that are determined by the zero set of a modulating coefficient. Solutions are shown to improve both in integrability and differentiability. These results apply to operators with rough kernels and modulating coefficients. To obtain these results we adapt a particular fractional version of the Gehring lemma developed by Kuusi, Mingione, and Sire in their work ``Nonlocal self-improving properties Anal. PDE, 8(1):57--114 for the specific nonlinear setting under investigation in this manuscript.
In this note we prove an estimate on the level sets of a function with $(p, q)$ growth that depends on the difference quotient of a bounded weak solution to a nonlocal double phase equation. This estimate is related to a self improving property of these solutions.
Consider a bounded solution of the focusing, energy-critical wave equation that does not scatter to a linear solution. We prove that this solution converges in some weak sense, along a sequence of times and up to scaling and space translation, to a s
We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a $p$-Laplac
We construct forward self-similar solutions (expanders) for the compressible Navier-Stokes equations. Some of these self-similar solutions are smooth, while others exhibit a singularity do to cavitation at the origin.
We prove global-in-time existence and uniqueness of measure solutions of a nonlocal interaction system of two species in one spatial dimension. For initial data including atomic parts we provide a notion of gradient-flow solutions in terms of the pse