Capillary-bridge Forces Between Solid Particles: Insights from Lattice Boltzmann Simulations


الملخص بالإنكليزية

Liquid capillary-bridge formation between solid particles has a critical influence on the rheological properties of granular materials and, in particular, on the efficiency of fluidized bed reactors. The available analytical and semi-analytical methods have inherent limitations, and often do not cover important aspects, like the presence of non-axisymmetric bridges. Here, we conduct numerical simulations of the capillary bridge formation between equally and unequally-sized solid particles using the lattice Boltzmann method, and provide an assessment of the accuracy of different families of analytical models. We find that some of the models taken into account are shown to perform better than others. However, all of them fail to predict the capillary force for contact angles larger than $pi/2$, where a repulsive capillary force attempts to push the solid particle outwards to minimize the surface energy, especially at a small separation distance.

تحميل البحث