ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-two-dimensional heterostructures (K$M_{1-x}$Te)(LaTe$_{3}$) ($M$ = Mn, Zn) with charge density waves

69   0   0.0 ( 0 )
 نشر من قبل Jin-Ke Bao Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Layered heterostructure materials with two different functional building blocks can teach us about emergent physical properties and phenomena arising from interactions between the layers. We report the intergrowth compounds KLa$M$$_{1-x}$Te$_{4}$ ($M$ = Mn, Zn; $xapprox$ 0.35) featuring two chemically distinct alternating layers [LaTe$_3$] and [K$M$$_{1-x}$Te]. Their crystal structures are incommensurate, determined by single X-ray diffraction for the Mn compound and transmission electron microscope (TEM) study for the Zn compound. KLaMn$_{1-x}$Te$_{4}$ crystallizes in the orthorhombic superspace group $Pmnm$(01/2${gamma}$)$s$00 with lattice parameters $a$ = 4.4815(3) {AA}, $b$ = 21.6649(16) {AA} and $c$ = 4.5220(3) {AA}. It exhibits charge density wave (CDW) order at room temperature with a modulation wave vector $mathbf{q}$ = 1/2$mathbf{b}$* + 0.3478$mathbf{c}$* originating from electronic instability of Te-square nets in [LaTe$_{3}$] layers. The Mn analog exhibits a cluster spin glass behavior with spin freezing temperature $T_{mathrm{f}}$ $approx$ 5 K attributed to disordered Mn vacancies and competing magnetic interactions in the [Mn$_{1-x}$Te] layers. The Zn analog also has charge density wave order at room temperature with a similar $mathbf{q}$-vector having the $mathbf{c}$* component ~ 0.346 confirmed by selected-area electron diffraction (SAED). Electron transfer from [K$M_{1-x}$Te] to [LaTe$_{3}$] layers exists in KLa$M_{1-x}$Te$_{4}$, leading to an enhanced electronic specific heat coefficient. The resistivities of KLa$M_{1-x}$Te$_{4}$ ($M$ = Mn, Zn) exhibit metallic behavior at high temperatures and an upturn at low temperatures, suggesting partial localization of carriers in the [LaTe$_{3}$] layers with some degree of disorder associated with the $M$ atom vacancies in the [$M_{1-x}$Te] layers.



قيم البحث

اقرأ أيضاً

435 - Tao Jiang 2021
Transition metal dichalcogenides are rich in their structural phases, e.g. 1T-TaS2 and 1T-TaSe2 form charge density wave (CDW) under low temperature with interesting and exotic properties. Here, we present a systematic study of different structures i n two-dimensional TaX2 (X=S, Se, Te) using density functional theory calculations with consideration of van der Waals interaction. All the normal phases present metal characteristics with various ground state and magnetic properties. The lattice reconstruction of CDW drastically affects the electronic and structural characteristics of 1T-TaS2 and 1T-TaSe2, leading to a transition from metal to insulator and an emergence of magnetic moment within periodic atomic clusters called the Star of David. The evaluated Heisenberg couplings indicate the weak ferromagnetic coupling between the clusters in monolayer. Furthermore, in bilayer commensurate CDW cases, we find intriguing phenomenon of the varying magnetic properties with different stacking orders. The magnetic moment in each layer disappears when two layers are coupled, but may sustain in certain stackings of interlayer antiferromagnetic configurations.
Charge density wave (CDW) is a collective quantum phenomenon in metals and features a wave-like modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in condensed matter physics. Here we report an interface and/or Zr intercalation induced semiconductor-metal phase transition, as well as a concomitant (2 $times$ 2) CDW order in 1T-ZrX$_2$ (X = Se, Te) thin films prepared on graphitized SiC(0001) substrates. Also observed has been a sizable CDW energy gap up to 22 meV opened at the Fermi level. Fourier-transformed scanning tunneling microscopy reveals a rather simple Fermi surface, consisting only of Zr 4d-derived conduction band at the corners of the Brillouin zone. Our finding that such a simple electronic structure is compatible with the CDW phase proves intriguing and challenges several prevailing scenarios for the formation of CDW in transition metal dichalcogenides.
Dielectric and magnetic properties have been studied for poly-crystalline samples of quasi-one-dimensional frustrated spin-1/2 system Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$(M=Ni and Zn) which does not exhibit a three-dimensional magnetic t ransition due to quantum spin fluctuation and low dimensionality. A broad peak in the magnetic susceptibility - temperature curves originated from a short range helical ordering at low temperature is suppressed by the Ni and Zn substitution for Cu sites. The capacitance is found to anomalously increase with decreasing T below ~50 K, which is also suppressed by the impurity doping. The behavior of the anomalous capacitance component is found to be strongly connected with that of the magnetic susceptibility for Rb$_{2}$(Cu$_{1-x}$M$_{x}$)$_{2}$Mo$_{3}$O$_{12}$ which indicates that the low-temperature dielectric response is driven by the magnetism.
Strong evidence suggests that transformative correlated electron behavior may exist only in unrealized clean-limit 2D materials such as 1T-TaS2. Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers impedes c orrelation-driven quantum behavior. Here we demonstrate a new route to realizing fragile 2D quantum states through epitaxial polytype engineering of van der Waals materials. The isolation of truly 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal-insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces epitaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication.
We have performed angle-resolved photoemission spectroscopy on epitaxial VTe2 films to elucidate the relationship between the fermiology and charge-density waves (CDW). We found that a two-dimensional triangular pocket in 1 monolayer (ML) VTe2 is con verted to a strongly warped quasi-one-dimensional (1D) Fermi surface in the 6ML counterpart, likely associated with the 1T-to-1T structural phase transition. We also revealed a metallic Fermi edge on the entire Fermi surface in 6ML at low temperature distinct from anisotropic pseudogap in 1ML, signifying a contrast behavior of CDW that is also supported by first-principles band-structure caluculations. The present result points to the importance of simultaneously controlling the structural phase and fermiology to manipulate the CDW properties in ultrathin transition-metal dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا