ﻻ يوجد ملخص باللغة العربية
Let $k$ be a positive integer. Let $G$ be a balanced bipartite graph of order $2n$ with bipartition $(X, Y)$, and $S$ a subset of $X$. Suppose that every pair of nonadjacent vertices $(x,y)$ with $xin S, yin Y$ satisfies $d(x)+d(y)geq n+1$. We show that if $|S|geq 2k+2$, then $G$ contains $k$ disjoint cycles covering $S$ such that each of the $k$ cycles contains at least two vertices of $S$. Here, both the degree condition and the lower bound of $|S|$ are best possible. And we also show that if $|S|=2k+1$, then $G$ contains $k$ disjoint cycles such that each of the $k$ cycles contains at least two vertices of $S$.
Let $ngeq 6,kgeq 0$ be two integers. Let $H$ be a graph of order $n$ with $k$ components, each of which is an even cycle of length at least $6$ and $G$ be a bipartite graph with bipartition $(X,Y)$ such that $|X|=|Y|geq n/2$. In this paper, we show t
Lovasz (1965) characterized graphs without two vertex-disjoint cycles, which implies that such graphs have at most three vertices hitting all cycles. In this paper, we ask whether such a small hitting set exists for $S$-cycles, when a graph has no tw
It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker result
We compute the limiting distribution, as n approaches infinity, of the number of cycles of length between gamma n and delta n in a permutation of [n] chosen uniformly at random, for constants gamma, delta such that 1/(k+1) <= gamma < delta <= 1/k for
In this paper we enumerate and give bijections for the following four sets of vertices among rooted ordered trees of a fixed size: (i) first-children of degree $k$ at level $ell$, (ii) non-first-children of degree $k$ at level $ell-1$, (iii) leaves h