ﻻ يوجد ملخص باللغة العربية
Flash sintering phenomena are predominantly associated with ceramics due to thermal runaway of their electric conductivity noticeably represented in materials such as zirconia or silicon carbide. Because of their high electric conductivity, flash sintering of metals is nearly inexistent. In this work, an original metal powder flash sintering method based on a microwave approach is presented. Within the developed approach, an unusually fast (60 s) thermal and sintering runaway of Ti-6Al-4V powder is experimentally revealed under microwave illumination. This phenomenon is simulated based on an electromagnetic-thermal-mechanical (EMTM) model. The developed multiphysics model reveals that the metal powder specimens runaway does not result from its intrinsic material properties, but results from the resonance phenomenon thermally activated by the surrounding tooling material. The EMTM simulation predicts with a very good accuracy the microwave repartition and the resulting densification and powder specimens shape distortions observed experimentally. The comparison of the microwave and conventional sintering kinetics indicates an important acceleration of the sintering behavior under microwave heating. The developed sintering approach has a potential of the implementation for time-effective mass production of small metal parts.
A new flash (ultra-rapid) spark plasma sintering method applicable to various materials systems, regardless of their electrical resistivity, is developed. A number of powders ranging from metals to electrically insulative ceramics have been successfu
Direct and hybrid microwave sintering of 3Y-ZrO 2 are comparatively studied at frequency of 2.45 GHz. Using the continuum theory of sintering, a fully coupled electromagnetic-thermalmechanical (EMTM) finite element simulation is carried out to predic
Graphite creep has high importance for applications using high pressures (100 MPa) and temperatures close to 2000 {textdegree}C. In particular, the new flash spark plasma sintering process (FSPS) is highly sensitive to graphite creep when applied to
High-purity and superfine high-entropy metal diboride powders, namely (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, were successfully synthesized via a facile borothermal reduction method at 1973 K for the first time. The as-synthesized powders with an average part
The 3 heating modes are utilized to make ZrN powders have 3 different levels of the electric current density at the same temperature during spark plasma sintering (SPS). The constitutive equation of sintering for SPS is applied to the experimental po