ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma

82   0   0.0 ( 0 )
 نشر من قبل Zheng Gong
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide gas, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio $sim$ 94% are obtained.



قيم البحث

اقرأ أيضاً

148 - T. P. Yu , A. Pukhov , G. Shvets 2009
By using multi-dimensional particle-in-cell simulation, we present a new regime of stable proton beam acceleration which takes place when a two-specie shaped foil is illuminated by a circularly polarized laser pulse. It is observed that the lighter p rotons are nearly-instantaneously separated from the heavier carbon ions due to the charge-to-mass ratio difference. The heavy-ions layer extensively expands in space and acts to buffer the proton layer from the Rayleigh-Taylor-like (RT) instability that would have otherwise degraded the proton beam acceleration. A simple three-interface model is formulated to qualitatively explain the stabilization of the light-ions acceleration. Due to the absence of the RT-like instability, the produced high quality mono-energetic proton bunch can be well maintained even after the laser-foil interaction concludes.
A cascaded ion acceleration scheme is proposed by use of ultrashort laser-irradiated microtubes. When the electrons of a microtube are blown away by intense laser pulses, strong charge-separation electric fields are formed in the microtube both along the axial and along the radial directions. By controlling the time delay between the laser pulses and a pre-accelerated proton beam injected along the microtube axis, we demonstrate that this proton beam can be further accelerated by the transient axial electric field in the laser-irradiated microtube. Moreover, the collimation of the injected proton beam can be enhanced by the inward radial electric field. Numerical simulations show that this cascaded ion acceleration scheme works efficiently even at non-relativistic laser intensities, and it can be applied to injected proton beams in the energy range from 1 to 100 MeV. Therefore, it is particularly suitable for cascading acceleration of protons to higher energy.
183 - Etele Molnar , Dan Stutman 2021
A detailed study of direct laser-driven electron acceleration in paraxial Laguerre-Gaussian modes corresponding to helical beams $text{LG}_{0m}$ with azimuthal modes $m=left{1,2,3,4,5right}$ is presented. Due to the difference between the ponderomoti ve force of the fundamental Gaussian beam $text{LG}_{00}$ and helical beams $text{LG}_{0m}$ we found that the optimal beam waist leading to the most energetic electrons at full width at half maximum is more than twice smaller for the latter and corresponds to a few wavelengths $Delta w_0=left{6,11,19right}lambda_0$ for laser powers of $P_0 = left{0.1,1,10right}$ PW. We also found that for azimuthal modes $mgeq 3$ the optimal waist should be smaller than $Delta w_0 < 19 lambda_0$. Using these optimal values we have observed that the average kinetic energy gain of electrons is about an order of magnitude larger in helical beams compared to the fundamental Gaussian beam. This average energy gain increases with the azimuthal index $m$ leading to collimated electrons of a few $100$ MeV energy in the direction of the laser propagation.
Supersonic gas jets produced by converging-diverging (C-D) nozzles are commonly used as targets for laser-plasma acceleration (LPA) experiments. A major point of interest for these targets is the gas density at the region of interaction where the las er ionizes the gas plume to create a plasma, providing the acceleration structure. Tuning the density profiles at this interaction region is crucial to LPA optimization. A flat-top density profile is desired at this line of interaction to control laser propagation and high energy electron acceleration, while a short high-density profile is often preferred for acceleration of lower-energy tightly-focused laser-plasma interactions. A particular design parameter of interest is the curvature of the nozzles diverging section. We examine three nozzle designs with different curvatures: the concave bell, straight conical and convex trumpet nozzles. We demonstrate that, at mm-scale distances from the nozzle exit, the trumpet and straight nozzles, if optimized, produce flat-top density profiles whereas the bell nozzle creates focused regions of gas with higher densities. An optimization procedure for the trumpet nozzle is derived and compared to the straight nozzle optimization process. We find that the trumpet nozzle, by providing an extra parameter of control through its curvature, is more versatile for creating flat-top profiles and its optimization procedure is more refined compared to the straight nozzle and the straight nozzle optimization process. We present results for different nozzle designs from computational fluid dynamics (CFD) simulations performed with the program ANSYS Fluent and verify them experimentally using neutral density interferometry.
A new scheme for accelerating positively charged particles in a plasma wakefield accelerator is proposed. If the proton drive beam propagates in a hollow plasma channel, and the beam radius is of order of the channel width, the space charge force of the driver causes charge separation at the channel wall, which helps to focus the positively charged witness bunch propagating along the beam axis. In the channel, the acceleration buckets for positively charged particles are much larger than in the blowout regime of the uniform plasma, and stable acceleration over long distances is possible. In addition, phasing of the witness with respect to the wave can be tuned by changing the radius of the channel to ensure the acceleration is optimal. Two dimensional simulations suggest that, for proton drivers likely available in future, positively charged particles can be stably accelerated over 1 km with the average acceleration gradient of 1.3 GeV/m.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا