ﻻ يوجد ملخص باللغة العربية
Digital-analog quantum computation aims to reduce the currently infeasible resource requirements needed for near-term quantum information processing by replacing sequences of one- and two-qubit gates with a unitary transformation generated by the systems underlying Hamiltonian. Inspired by this paradigm, we consider superconducting architectures and extend the cross-resonance effect, up to first order in perturbation theory, from a two-qubit interaction to an analog Hamiltonian acting on 1D chains and 2D square lattices which, in an appropriate reference frame, results in a purely two-local Hamiltonian. By augmenting the analog Hamiltonian dynamics with single-qubit gates we show how one may generate a larger variety of distinct analog Hamiltonians. We then synthesize unitary sequences, in which we toggle between the various analog Hamiltonians as needed, simulating the dynamics of Ising, $XY$, and Heisenberg spin models. Our dynamics simulations are Trotter error-free for the Ising and $XY$ models in 1D. We also show that the Trotter errors for 2D $XY$ and 1D Heisenberg chains are reduced, with respect to a digital decomposition, by a constant factor. In order to realize these important near-term speedups, we discuss the practical considerations needed to accurately characterize and calibrate our analog Hamiltonians for use in quantum simulations. We conclude with a discussion of how the Hamiltonian toggling techniques could be extended to derive new analog Hamiltonians which may be of use in more complex digital-analog quantum simulations for various models of interacting spins.
We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if i
Digital quantum computing paradigm offers highly-desirable features such as universality, scalability, and quantum error correction. However, physical resource requirements to implement useful error-corrected quantum algorithms are prohibitive in the
Quantum computers will allow calculations beyond existing classical computers. However, current technology is still too noisy and imperfect to construct a universal digital quantum computer with quantum error correction. Inspired by the evolution of
Simulating quantum many-body systems is a highly demanding task since the required resources grow exponentially with the dimension of the system. In the case of fermionic systems, this is even harder since nonlocal interactions emerge due to the anti
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog bloc