ﻻ يوجد ملخص باللغة العربية
Using commodity WiFi data for applications such as indoor localization, object identification and tracking and channel sounding has recently gained considerable attention. We study the problem of channel impulse response (CIR) estimation from commodity WiFi channel state information (CSI). The accuracy of a CIR estimation method in this setup is limited by both the available channel bandwidth as well as various CSI distortions induced by the underlying hardware. We propose a multi-band splicing method that increases channel bandwidth by combining CSI data across multiple frequency bands. In order to compensate for the CSI distortions, we develop a per-band processing algorithm that is able to estimate the distortion parameters and remove them to yield the clean CSI. This algorithm incorporates the atomic norm denoising sparse recovery method to exploit channel sparsity. Splicing clean CSI over M frequency bands, we use orthogonal matching pursuit (OMP) as an estimation method to recover the sparse CIR with high (M-fold) resolution. Unlike previous works in the literature, our method does not appeal to any limiting assumption on the CIR (other than the widely accepted sparsity assumption) or any ad hoc processing for distortion removal. We show, empirically, that the proposed method outperforms the state of the art in terms of localization accuracy.
We study the problem of indoor localization using commodity WiFi channel state information (CSI) measurements. The accuracy of methods developed to address this problem is limited by the overall bandwidth used by the WiFi device as well as various ty
In this preliminary work, we study the problem of {it distributed} authentication in wireless networks. Specifically, we consider a system where multiple Bob (sensor) nodes listen to a channel and report their {it correlated} measurements to a Fusion
A typical handover problem requires sequence of complex signaling between a UE, the serving, and target base station. In many handover problems the down link based measurements are transferred from a user equipment to a serving base station and the d
The unlicensed spectrum has been utilized to make up the shortage on frequency spectrum in new radio (NR) systems. To fully exploit the advantages brought by the unlicensed bands, one of the key issues is to guarantee the fair coexistence with WiFi s
We provide a new estimator of integral operators with smooth kernels, obtained from a set of scattered and noisy impulse responses. The proposed approach relies on the formalism of smoothing in reproducing kernel Hilbert spaces and on the choice of a