ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram of vortices in the polar phase of spin-1 Bose-Einstein condensates

81   0   0.0 ( 0 )
 نشر من قبل Hiromitsu Takeuchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase diagram of lowest-energy vortices in the polar phase of spin-1 Bose--Einstein condensates is investigated theoretically. Singly quantized vortices are categorized by the local ordered state in the vortex core and three types of vortices are found as lowest-energy vortices, which are elliptic AF-core vortices, axisymmetric F-core vortices, and N-core vortices. These vortices are named after the local ordered state, ferromagnetic (F), antiferromagnetic (AF), broken-axisymmetry (BA), and normal (N) states apart from the bulk polar (P) state. The N-core vortex is a conventional vortex, in the core of which the superfluid order parameter vanishes. The other two types of vortices are stabilized when the quadratic Zeeman energy is smaller than a critical value. The axisymmetric F-core vortex is the lowest-energy vortex for ferromagnetic interaction, and it has an F core surrounded by a BA skin that forms a ferromagnetic-spin texture, as exemplified by the localized Mermin--Ho texture. The elliptic AF-core vortex is stabilized for antiferromagnetic interaction; the vortex core has both nematic-spin and ferromagnetic orders locally and is composed of the AF-core soliton spanned between two BA edges. The phase transition from the N-core vortex to the other two vortices is continuous, whereas that between the AF-core and F-core vortices is discontinuous. The critical point of the continuous vortex-core transition is computed by the perturbation analysis of the Bogoliubov theory and the Ginzburg--Landau formalism describes the critical behavior. The influence of trapping potential on the core structure is also investigated.



قيم البحث

اقرأ أيضاً

We theoretically study the structure of a stationary soliton in the polar phase of spin-1 Bose--Einstein condensate in the presence of quadratic Zeeman effect at zero temperature. The phase diagram of such solitons is mapped out by finding the states of minimal soliton energy in the defining range of polar phase. The states are assorted into normal, anti-ferromagnetic, broken-axisymmetry, and ferromagnetic phases according to the number and spin densities in the core. The order of phase transitions between different solitons and the critical behaviour of relevant continuous transitions are proved within the mean-field theory.
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio ns of a dipolar Bose-Einstein Condensate (BEC) in a pancake confinement at $T=0$ K and study the effect of quantized vorticity on the phases that can be realized depending upon the ratio between dipolar and short-range interaction. By increasing this ratio the system undergoes a spontaneous density modulation in the form of an ordered arrangement of multi-atom droplets. This modulated phase can be either a supersolid (SS) or a normal solid (NS). In the SS state droplets are immersed in a background of low-density superfluid and the system has a finite global superfluid fraction resulting in non-classical rotational inertia. In the NS state no such superfluid background is present and the global superfluid fraction vanishes. We propose here a protocol to create vortices in modulated phases of dipolar BEC by freezing into such phases a vortex-hosting superfluid (SF) state. The resulting system, depending upon the interactions strengths, can be either a SS or a NS To discriminate between these two possible outcome of a freezing experiment, we show that upon releasing of the radial harmonic confinement, the expanding vortex-hosting SS shows tell-tale quantum interference effects which display the symmetry of the vortex lattice of the originating SF, as opposed to the behavior of the NS which shows instead a ballistic radial expansion of the individual droplets. Such markedly different behavior might be used to prove the supersolid character of rotating dipolar condensates.
We investigate phase separation and hidden vortices in spin-orbit coupled ferromagnetic BoseEinstein condensates with rotation and Rabi coupling. The hidden vortices are invisible in density distribution but are visible in phase distribution, which c an carry angular momentum like the ordinary quantized vortices. In the absence of the rotation, we observe the phase separation induced by the spin-orbit coupling and determine the entire phase diagram of the existence of phase separation. For the rotation case, in addition to the phase separation, we demonstrate particularly that the spin-orbit coupling can result in the hidden vortices and hidden vortex-antivortex pairs. The corresponding entire phase diagrams are determined, depending on the interplay of the spin-orbit coupling strength, the rotation frequency, and Rabi frequency, which reveals the critical condition of the occurrence of the hidden vortices and vortex-antivortex pairs. The hidden vortices here are proved to be long-lived in the time scale of experiment by the dynamic analysis. These findings not only provide a clear illustration of the phase separation in spin-orbit coupled spinor Bose-Einstein condensates, but also open a new direction for investigating the hidden vortices in high-spin quantum system.
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongate quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
Solitons in multi-component Bose-Einstein condensates have been paid much attention, due to the stability and wide applications of them. The exact soliton solutions are usually obtained for integrable models. In this paper, we present four families o f exact spin soliton solutions for non-integrable cases in spin-1 Bose-Einstein Condensates. The whole particle density is uniform for the spin solitons, which is in sharp contrast to the previously reported solitons of integrable models. The spectrum stability analysis and numerical simulation indicate the spin solitons can exist stably. The spin density redistribution happens during the collision process, which depends on the relative phase and relative velocity between spin solitons. The non-integrable properties of the systems can bring spin solitons experience weak amplitude and location oscillations after collision. These stable spin soliton excitations could be used to study the negative inertial mass of solitons, the dynamics of soliton-impurity systems, and the spin dynamics in Bose-Einstein condensates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا