We measured the latency of a 100 km fibre link using a Correlation OTDR. Improvements over previous results were achieved by increasing the probe signal rate to 10 Gbit/s, using dispersion compensation gratings, and coupling the receiver time base to an external PPS signal.
Pulse coding is an effective method to overcome the trade-off between signal-to-noise ratio (SNR) and spatial resolution in optical-fiber sensing systems based on optical time-domain reflectometry (OTDR). However, the coding gain has not been yet ful
ly exploited. We provide a comprehensive theoretical analysis and experimental validation of the sampling criteria for correlation-coded OTDR, showing that the coding gain can be further improved by harnessing the oversampling. Moreover, the bandwidth-limited feature of the photodetector can also be utilized to select the sampling rate so that additional SNR enhancement is obtained. We believe this principle could be applied to any practical OTDR-based optical-fiber sensing technology, and serve to update existing systems based on correlation-coded OTDR in a straightforward manner at a relatively low cost.
When shared between remote locations, entanglement opens up fundamentally new capabilities for science and technology [1, 2]. Envisioned quantum networks distribute entanglement between their remote matter-based quantum nodes, in which it is stored,
processed and used [1]. Pioneering experiments have shown how photons can distribute entanglement between single ions or single atoms a few ten meters apart [3, 4] and between two nitrogen-vacancy centres 1 km apart [5]. Here we report on the observation of entanglement between matter (a trapped ion) and light (a photon) over 50~km of optical fibre: a practical distance to start building large-scale quantum networks. Our methods include an efficient source of light-matter entanglement via cavity-QED techniques and a quantum photon converter to the 1550~nm telecom C band. Our methods provide a direct path to entangling remote registers of quantum-logic capable trapped-ion qubits [6 - 8], and the optical atomic clock transitions that they contain [9, 10], spaced by hundreds of kilometers.
In this paper, we propose adaptive channel-matched detection (ACMD) for C-band 64-Gbit/s intensity-modulation and direct-detection (IM/DD) optical on-off keying (OOK) system over a 100-km dispersion-uncompensated link. The proposed ACMD can adaptivel
y compensate most of the link distortions based on channel and noise characteristics, which includes a polynomial nonlinear equalizer (PNLE), a decision feedback equalizer (DFE) and maximum likelihood sequence estimation (MLSE). Based on the channel characteristics, PNLE eliminates the linear and nonlinear distortions, while the followed DFE compensates the spectral nulls caused by chromatic dispersion. Finally, based on the noise characteristics, a post filter can whiten the noise for implementing optimal signal detection using MLSE. To the best of our knowledge, we present a record C-band 64-Gbit/s IM/DD optical OOK system over a 100 km dispersion-uncompensated link achieving 7% hard-decision forward error correction limit using only the proposed ACMD at the receiver side. In conclusion, ACMD-based C-band 64-Gbit/s optical OOK system shows great potential for future optical interconnects.
We review currently discussed solutions for 80 km DWDM transmission targeting inter data-center connections at 100G and 400G line rates. PDM-64QAM, PAM4 and DMT are investigated, while the focus lies on directly detected solutions.
The wave-function-matching (WFM) technique for first-principles transport-property calculations was modified by So{}rensen {it et al.} so as to exclude rapidly decreasing evanescent waves [So{}rensen {it et al.}, Phys. Rev. B {bf 77}, 155301 (2008)].
However, this method lacks translational invariance of the transmission probability with respect to insertion of matching planes and consistency between the sum of the transmission and reflection probabilities and the number of channels in the transition region. We reformulate the WFM method since the original methods are formulated to include all the generalized Bloch waves. It is found that the translational invariance is destroyed by the overlap of the layers between the electrode and transition regions and by the pseudoinverses used to exclude the rapidly decreasing evanescent waves. We then devise a method that removes the overlap and calculates the transmission probability without the pseudoinverses. As a result, we find that the translational invariance of the transmission probability with respect to insertion of the extra layers is properly retained and the sum of the transmission and reflection probabilities exactly agrees with the number of channels. In addition, we prove that the accuracy in the transmission probability of this WFM technique is comparable with that obtained by the nonequilibrium Greens function method. Furthermore, we carry out the electron transport calculations on two-dimensional graphene sheets embedded with B--N line defects sandwiched between a pair of semi-infinite graphene electrodes and find the dependence of the electron transmission on the transverse momentum perpendicular to the direction of transport.
Florian Azendorf
,Annika Dochhan
,Jim Zou
.
(2020)
.
"Improvement of accuracy for measurement of 100-km fibre latency with Correlation OTDR"
.
Florian Azendorf
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا