Strengthening classical results by Bratteli and Kishimoto, we prove that two subshifts of finite type are shift equivalent in the sense of Williams if and only if their Cuntz-Krieger algebras are equivariantly stably isomorphic. This provides an equivalent formulation of Williams problem from symbolic dynamics in terms of Cuntz-Krieger C*-algebras. To establish our results, we apply works on shift equivalence and strong Morita equivalence of C*-correspondences due to Eleftherakis, Kakariadis and Katsoulis. Our main results then yield K-theory classification of C*-dynamical systems arising from Cuntz-Krieger algebras.