ﻻ يوجد ملخص باللغة العربية
Magnrtic flux ropes (MFRs) play a crucial role during magnetic reconnection. They are believed to be primarily generated by tearing mode instabilities in the electron diffusion region (EDR). However, they have never been observed inside the EDR. Here, we present the first observation of an MFR inside an EDR. The bifurcated non-force-free MFR, with a width of 27.5de in the L direction and 4.8de in the N direction, was moving away from the X-line. Inside the MFR, strong energy dissipation was detected. The MFR can modulate the electric field in the EDR. We reconstructed magnetic topology of the electron-scale MFR. Our study promotes understanding of MRFs initial state and its role in electron-scale processes during magnetic reconnection.
Small interplanetary magnetic flux ropes (SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU. These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRsare usually <12 h, and the d
We investigate two successive flux rope (FR1 and FR2) eruptions resulting in two coronal mass ejections (CMEs) on 2012 January 23. Both FRs appeared as an EUV channel structure in the images of high temperature passbands of the Atmospheric Imaging As
Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earths magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASAs Magn
A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across
Using observations of Earths bow shock by the Magnetospheric Multiscale mission, we show for the first time that active magnetic reconnection is occurring at current sheets embedded within the quasi-parallel shocks transition layer. We observe an ele