We discuss strategies for comparisons of nonperturbative QCD predictions for parton distribution functions (PDFs) with high-energy experiments in the region of large partonic momentum fractions $x$. Analytic functional forms for PDFs cannot be uniquely determined solely based on discrete experimental measurements because of a mathematical property of mimicry of PDF parametrizations that we prove using a representation based on Bezier curves. Predictions of nonperturbative QCD approaches for the $x$ dependence of PDFs instead should be cast in a form that enables decisive comparisons against experimental measurements. Predictions for effective power laws of $(1-x)$ dependence of PDFs may play this role. Expectations for PDFs in a proton based on quark counting rules are compared against the effective power laws of $(1-x)$ dependence satisfied by CT18 next-to-next-to-leading order parton distributions. We comment on implications for studies of PDFs in a pion, in particular on the comparison of nonperturbative approaches with phenomenological PDFs.