ﻻ يوجد ملخص باللغة العربية
We study axion effective field theories (EFTs), with a focus on axion couplings to massive chiral gauge fields. We investigate the EFT interactions that participate in processes with an axion and two gauge bosons, and we show that, when massive chiral gauge fields are present, such interactions do not entirely originate from the usual anomalous EFT terms. We illustrate this both at the EFT level and by matching to UV-complete theories. In order to assess the consistency of the Peccei--Quinn (PQ) anomaly matching, it is useful to introduce an auxiliary, non-dynamical gauge field associated to the PQ symmetry. When applied to the case of the Standard Model (SM) electroweak sector, our results imply that anomaly-based sum rules between EFT interactions are violated when chiral matter is integrated out, which constitutes a smoking gun of the latter. As an illustration, we study a UV-complete chiral extension of the SM, containing an axion arising from an extended Higgs sector and heavy fermionic matter that obtains most of its mass by coupling to the Higgs doublets. We assess the viability of such a SM extension through electroweak precision tests, bounds on Higgs rates and direct searches for heavy charged matter. At energies below the mass of the new chiral fermions, the model matches onto an EFT where the electroweak gauge symmetry is non-linearly realised.
Gauge fields provide the fundamental interactions in the Standard Model of particle physics. Gauge field configurations with nontrivial topological windings are known to play crucial roles in many important phenomena, from matter-anti-matter asymmetr
Effective field theory (EFT) formulations of dark matter interactions have proven to be a convenient and popular way to quantify LHC bounds on dark matter. However, some of the non-renormalizable EFT operators considered do not respect the gauge symm
We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed
We consider aspects of tree and one-loop behavior in a generic 4d EFT of massless scalars, fermions, and vectors, with a particular eye to the high-energy limit of the Standard Model EFT at operator dimensions 6 and 8. First, we classify the possible
We study UV-complete Froggatt-Nielsen-like models for the generation of mass and mixing hierarchies, assuming that the integrated heavy fields are chiral with respect to an abelian Froggatt-Nielsen symmetry. It modifies the mixed anomalies with respe