ﻻ يوجد ملخص باللغة العربية
We provide a non conformal generalization of the Comp`ere-Song-Strominger (CSS) boundary conditions for AdS$_3$ gravity that breaks the $widehat u(1)$ Kac-Moody-Virasoro symmetry to two $u(1)$s. The holographic dual specified by the new boundary conditions can be understood as an irrelevant deformation of a warped conformal field theory (WCFT). Upon consistent reduction to two dimensions, AdS$_3$ gravity results in a deformed Jackiw-Teitelboim dilaton gravity model coupled to a Maxwell field. We show that near extremality the boundary conditions inherited from generalized CSS boundary conditions in three dimensions give rise to an effective action exhibiting the same symmetry breaking pattern as the complex Sachdev-Ye-Kitaev models. Besides the Schwarzian term reflecting the breaking of conformal symmetry, the effective action contains an additional term that captures the breaking of the $widehat u(1)$ Kac-Moody symmetry.
We argue that stringy effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the lead
We study a series of powerful correspondences among new multi-gravity extensions of the Jackiw-Teitelboim model, multi-SYK models and multi-Schwarzian quantum mechanics, in the $rm{(A)dS_{2}/CFT}$ arena. Deploying a $BF$-like formulation of the model
We study the $6j$ symbol for the conformal group, and its appearance in three seemingly unrelated contexts: the SYK model, conformal representation theory, and perturbative amplitudes in AdS. The contribution of the planar Feynman diagrams to the thr
We discuss the connections between the complex SYK model at the conformal limit and warped conformal field theories. Both theories have an $SL(2,R) times U(1)$ global symmetry. We present comparisons on symmetries, correlation functions, the effectiv
In this work we consider AdS$_3$ gravitational theory with certain mixed boundary conditions at spatial infinity. Using the Chern-Simons formalism of AdS$_3$ gravity, we find that these boundary conditions lead to non-trivial boundary terms, which, i