ﻻ يوجد ملخص باللغة العربية
Most current extractive summarization models generate summaries by selecting salient sentences. However, one of the problems with sentence-level extractive summarization is that there exists a gap between the human-written gold summary and the oracle sentence labels. In this paper, we propose to extract fact-level semantic units for better extractive summarization. We also introduce a hierarchical structure, which incorporates the multi-level of granularities of the textual information into the model. In addition, we incorporate our model with BERT using a hierarchical graph mask. This allows us to combine BERTs ability in natural language understanding and the structural information without increasing the scale of the model. Experiments on the CNN/DaliyMail dataset show that our model achieves state-of-the-art results.
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged gr
Current abstractive summarization systems outperform their extractive counterparts, but their widespread adoption is inhibited by the inherent lack of interpretability. To achieve the best of both worlds, we propose EASE, an extractive-abstractive fr
Extractive methods have been proven effective in automatic document summarization. Previous works perform this task by identifying informative contents at sentence level. However, it is unclear whether performing extraction at sentence level is the b
Although domain shift has been well explored in many NLP applications, it still has received little attention in the domain of extractive text summarization. As a result, the model is under-utilizing the nature of the training data due to ignoring th
Dialogue summarization aims to generate a summary that indicates the key points of a given dialogue. In this work, we propose an end-to-end neural model for dialogue summarization with two novel modules, namely, the emph{supporting utterance flow mod