ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Graph Neural Networks for Heterogeneous Graphs

90   0   0.0 ( 0 )
 نشر من قبل Adam Lerer
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data. Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks by simply operating on graph-smoothed node features, rather than using end-to-end learned feature hierarchies that are challenging to scale to large graphs. In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities. We propose Neighbor Averaging over Relation Subgraphs (NARS), which trains a classifier on neighbor-averaged features for randomly-sampled subgraphs of the metagraph of relations. We describe optimizations to allow these sets of node features to be computed in a memory-efficient way, both at training and inference time. NARS achieves a new state of the art accuracy on several benchmark datasets, outperforming more expensive GNN-based methods



قيم البحث

اقرأ أيضاً

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use graph sampling or layer-wise sampling techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine. The codes of GBP can be found at https://github.com/chennnM/GBP .
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this g raph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible. It is challenging due to large memory capacity and bandwidth requirements on a single compute node and high communication volumes across multiple nodes. In this paper, we present DistGNN that optimizes the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters via an efficient shared memory implementation, communication reduction using a minimum vertex-cut graph partitioning algorithm and communication avoidance using a family of delayed-update algorithms. Our results on four common GNN benchmark datasets: Reddit, OGB-Products, OGB-Papers and Proteins, show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets, respectively, over baseline DGL implementations running on a single CPU socket
137 - Jianxin Li , Hao Peng , Yuwei Cao 2021
Graph neural networks (GNNs) have been widely used in deep learning on graphs. They can learn effective node representations that achieve superior performances in graph analysis tasks such as node classification and node clustering. However, most met hods ignore the heterogeneity in real-world graphs. Methods designed for heterogeneous graphs, on the other hand, fail to learn complex semantic representations because they only use meta-paths instead of meta-graphs. Furthermore, they cannot fully capture the content-based correlations between nodes, as they either do not use the self-attention mechanism or only use it to consider the immediate neighbors of each node, ignoring the higher-order neighbors. We propose a novel Higher-order Attribute-Enhancing (HAE) framework that enhances node embedding in a layer-by-layer manner. Under the HAE framework, we propose a Higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning. HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics, and leverages the self-attention mechanism to explore content-based nodes interactions. The unique higher-order architecture of HAEGNN allows examining the first-order as well as higher-order neighborhoods. Moreover, HAEGNN shows good explainability as it learns the importances of different meta-paths and meta-graphs. HAEGNN is also memory-efficient, for it avoids per meta-path based matrix calculation. Experimental results not only show HAEGNN superior performance against the state-of-the-art methods in node classification, node clustering, and visualization, but also demonstrate its superiorities in terms of memory efficiency and explainability.
Learning system dynamics directly from observations is a promising direction in machine learning due to its potential to significantly enhance our ability to understand physical systems. However, the dynamics of many real-world systems are challengin g to learn due to the presence of nonlinear potentials and a number of interactions that scales quadratically with the number of particles $N$, as in the case of the N-body problem. In this work, we introduce an approach that transforms a fully-connected interaction graph into a hierarchical one which reduces the number of edges to $O(N)$. This results in linear time and space complexity while the pre-computation of the hierarchical graph requires $O(Nlog (N))$ time and $O(N)$ space. Using our approach, we are able to train models on much larger particle counts, even on a single GPU. We evaluate how the phase space position accuracy and energy conservation depend on the number of simulated particles. Our approach retains high accuracy and efficiency even on large-scale gravitational N-body simulations which are impossible to run on a single machine if a fully-connected graph is used. Similar results are also observed when simulating Coulomb interactions. Furthermore, we make several important observations regarding the performance of this new hierarchical model, including: i) its accuracy tends to improve with the number of particles in the simulation and ii) its generalisation to unseen particle counts is also much better than for models that use all $O(N^2)$ interactions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا