ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-flavor collective neutrino conversions with multi-azimuthal-angle instability in an electron-capture supernova model

63   0   0.0 ( 0 )
 نشر من قبل Masamichi Zaizen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

We study the effects of collective neutrino oscillations on $ u p$ process nucleosynthesis in proton-rich neutrino-driven winds by including both the multi-angle $3times3$ flavor mixing and the nucleosynthesis network calculation. The number flux of energetic electron antineutrinos is raised by collective neutrino oscillations in a $1$D supernova model for $40 M_{odot}$ progenitor. When the gas temperature decreases down to $sim2-3times10^{9}$ K, the increased flux of electron antineutrinos promotes $ u p$ process more actively, resulting in the enhancement of $p$-nuclei. In the early phase of neutrino-driven wind, blowing at $0.6$ s after core bounce, oscillation effects are prominent in inverted mass hierarchy and $p$-nuclei are synthesized up to $^{106}mathrm{Cd}$ and $^{108}mathrm{Cd}$. On the other hand, in the later wind trajectory at $1.1$ s after core bounce, abundances of $p$-nuclei are increased remarkably by $sim10-10^{4}$ times in normal mass hierarchy and even reaching heavier $p$-nuclei such as $^{124}mathrm{Xe}$, $^{126}mathrm{Xe}$ and $^{130}mathrm{Ba}$. The averaged overproduction factor of $p$-nuclei is dominated by the later wind trajectories. Our results demonstrate that collective neutrino oscillations can strongly influence $ u p$ process, which indicates that they should be included in the network calculations in order to obtain precise abundances of $p$-nuclei. The conclusions of this paper depend on the difference of initial neutrino parameters between electron and non-electron antineutrino flavors which is large in our case. Further systematic studies on input neutrino physics and wind trajectories are necessary to draw a robust conclusion. However, this finding would help understand the origin of solar-system isotopic abundances of $p$-nuclei such as $^{92,94}mathrm{Mo}$ and $^{96,98}mathrm{Ru}$.
A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, s tationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this paper we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا