ترغب بنشر مسار تعليمي؟ اضغط هنا

Conservation of angular momentum in second harmonic generation from under-dense plasmas

324   0   0.0 ( 0 )
 نشر من قبل Chen-Kang Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin and orbital angular momentum of an optical beam are two independent parameters that exhibit distinct effects on mechanical objects. However, when laser beams with angular momentum interact with plasmas, one can observe the interplay between the spin and the orbital angular momentum. Here, by measuring the helical phase of the second harmonic 2{omega} radiation generated in an underdense plasma using a known spin and orbital angular momentum pump beam, we verify that the total angular momentum of photons is conserved and observe the conversion of spin to orbital angular momentum. We further determine the source of the 2{omega} photons by analyzing near field intensity distributions of the 2{omega} light. The 2{omega} images are consistent with these photons being generated near the largest intensity gradients of the pump beam in the plasma as predicted by the combined effect of spin and orbital angular momentum when Laguerre-Gaussian beams are used.



قيم البحث

اقرأ أيضاً

Light with spatiotemporal orbital angular momentum (ST-OAM) is a recently discovered type of structured and localized electromagnetic field. This field carries characteristic space-time spiral phase structure and transverse intrinsic OAM. In this wor k, we present the generation and characterization of the second-harmonic of ST-OAM pulses. We uncovered the conservation of transverse OAM in a second-harmonic generation process, where the space-time topological charge of the fundamental field is doubled along with the optical frequency. Our experiment thus suggests a general ST-OAM nonlinear scaling rule - analogous to that in conventional OAM of light. Furthermore, we observe that the topology of a second-harmonic ST-OAM pulse can be modified by complex spatiotemporal astigmatism, giving rise to multiple phase singularities separated in space and time. Our study opens a new route for nonlinear conversion and scaling of light carrying ST-OAM with the potential for driving other secondary ST-OAM sources of electromagnetic fields and beyond.
A new physical mechanism to achieve spin-to-orbital angular momentum conversion based on the interaction of an intense circularly polarized (CP) laser beam with a plane foil is presented and studied for the first time. It has been verified by both si mulation and theoretical analysis that vortex harmonics carrying orbital angular momentum (OAM) are generated after a relativistic CP laser beam, even a Gaussian beam, impinges normally on a plane foil. The generation of this vortex harmonics is attributed to the vortex oscillation of the plasma surface driven harmonically by the vortex longitudinal electric field of the CP beam. During the process of harmonic generation, the spin angular momenta of fundamental-frequency photons are converted to OAM of harmonic photon because of the conservation of total angular momentum. In addition, if an initially vortex beam or a spiral phase plate is used, the OAM of harmonic photon can be more tunable and controllable.
We propose a scheme to generate gamma-ray photons with an orbital angular momentum (OAM) and high energy simultaneously from laser-plasma interactions by irradiating a circularly polarized Laguerre-Gaussian laser on a thin plasma target. The spin ang ular momentum and OAM are first transferred to electrons from the driving laser photons, and then the OAM is transferred to the gamma-ray photons from the electrons through quantum radiation. This scheme has been demonstrated using three-dimensional quantum electrodynamics particle-in-cell simulation. The topological charge, chirality and carrier-envelope phase of the short ultra-intense vortex laser can be revealed according to the pattern feature of the energy density of radiated photons.
We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pum ping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beams axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.
We present an experimental technique using orbital angular momentum (OAM) in a fundamental laser field to drive High Harmonic Generation (HHG). The mixing of beams with different OAM allows to generate two laser foci tightly spaced to study the phase and amplitude of HHG produced in diatomic nitrogen. Nitrogen is used as a well studied system to show the quality of OAM based HHG interferometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا