ترغب بنشر مسار تعليمي؟ اضغط هنا

Can nonlinear parametric oscillators solve random Ising models?

63   0   0.0 ( 0 )
 نشر من قبل Marcello Calvanese Strinati
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution of the Ising model. By considering a broad family of frustrated Ising models, we show that the most-efficient mode does not correspond generically to the ground state of the Ising model. We infer that networks of parametric oscillators close to threshold are intrinsically not Ising solvers. Nevertheless, the network can find the correct solution if the oscillators are driven sufficiently above threshold, in a regime where nonlinearities play a predominant role. We find that for all probed instances of the model, the network converges to the ground state of the Ising model with a finite probability.



قيم البحث

اقرأ أيضاً

This paper develops results for the next nearest neighbour Ising model on random graphs. Besides being an essential ingredient in classic models for frustrated systems, second neighbour interactions interactions arise naturally in several application s such as the colour diversity problem and graphical games. We demonstrate ensembles of random graphs, including regular connectivity graphs, that have a periodic variation of free energy, with either the ratio of nearest to next nearest couplings, or the mean number of nearest neighbours. When the coupling ratio is integer paramagnetic phases can be found at zero temperature. This is shown to be related to the locked or unlocked nature of the interactions. For anti-ferromagnetic couplings, spin glass phases are demonstrated at low temperature. The interaction structure is formulated as a factor graph, the solution on a tree is developed. The replica symmetric and energetic one-step replica symmetry breaking solution is developed using the cavity method. We calculate within these frameworks the phase diagram and demonstrate the existence of dynamical transitions at zero temperature for cases of anti-ferromagnetic coupling on regular and inhomogeneous random graphs.
This paper introduces neuroevolution for solving differential equations. The solution is obtained through optimizing a deep neural network whose loss function is defined by the residual terms from the differential equations. Recent studies have focus ed on learning such physics-informed neural networks through stochastic gradient descent (SGD) variants, yet they face the difficulty of obtaining an accurate solution due to optimization challenges. In the context of solving differential equations, we are faced with the problem of finding globally optimum parameters of the network, instead of being concerned with out-of-sample generalization. SGD, which searches along a single gradient direction, is prone to become trapped in local optima, so it may not be the best approach here. In contrast, neuroevolution carries out a parallel exploration of diverse solutions with the goal of circumventing local optima. It could potentially find more accurate solutions with better optimized neural networks. However, neuroevolution can be slow, raising tractability issues in practice. With that in mind, a novel and computationally efficient transfer neuroevolution algorithm is proposed in this paper. Our method is capable of exploiting relevant experiential priors when solving a new problem, with adaptation to protect against the risk of negative transfer. The algorithm is applied on a variety of differential equations to empirically demonstrate that transfer neuroevolution can indeed achieve better accuracy and faster convergence than SGD. The experimental outcomes thus establish transfer neuroevolution as a noteworthy approach for solving differential equations, one that has never been studied in the past. Our work expands the resource of available algorithms for optimizing physics-informed neural networks.
We report on large-scale Wang-Landau Monte Carlo simulations of the critical behavior of two spin models in two- (2d) and three-dimensions (3d), namely the 2d random-bond Ising model and the pure 3d Blume-Capel model at zero crystal-field coupling. T he numerical data we obtain and the relevant finite-size scaling analysis provide clear answers regarding the universality aspects of both models. In particular, for the random-bond case of the 2d Ising model the theoretically predicted strong universalitys hypothesis is verified, whereas for the second-order regime of the Blume-Capel model, the expected $d=3$ Ising universality is verified. Our study is facilitated by the combined use of the Wang-Landau algorithm and the critical energy subspace scheme, indicating that the proposed scheme is able to provide accurate results on the critical behavior of complex spin systems.
Motivated by the recent success of tensor networks to calculate the residual entropy of spin ice and kagome Ising models, we develop a general framework to study frustrated Ising models in terms of infinite tensor networks %, i.e. tensor networks tha t can be contracted using standard algorithms for infinite systems. This is achieved by reformulating the problem as local rules for configurations on overlapping clusters chosen in such a way that they relieve the frustration, i.e. that the energy can be minimized independently on each cluster. We show that optimizing the choice of clusters, including the weight on shared bonds, is crucial for the contractibility of the tensor networks, and we derive some basic rules and a linear program to implement them. We illustrate the power of the method by computing the residual entropy of a frustrated Ising spin system on the kagome lattice with next-next-nearest neighbour interactions, vastly outperforming Monte Carlo methods in speed and accuracy. The extension to finite-temperature is briefly discussed.
As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of fin ite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا