ترغب بنشر مسار تعليمي؟ اضغط هنا

Attentional Separation-and-Aggregation Network for Self-supervised Depth-Pose Learning in Dynamic Scenes

111   0   0.0 ( 0 )
 نشر من قبل Feng Gao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning depth and ego-motion from unlabeled videos via self-supervision from epipolar projection can improve the robustness and accuracy of the 3D perception and localization of vision-based robots. However, the rigid projection computed by ego-motion cannot represent all scene points, such as points on moving objects, leading to false guidance in these regions. To address this problem, we propose an Attentional Separation-and-Aggregation Network (ASANet), which can learn to distinguish and extract the scenes static and dynamic characteristics via the attention mechanism. We further propose a novel MotionNet with an ASANet as the encoder, followed by two separate decoders, to estimate the cameras ego-motion and the scenes dynamic motion field. Then, we introduce an auto-selecting approach to detect the moving objects for dynamic-aware learning automatically. Empirical experiments demonstrate that our method can achieve the state-of-the-art performance on the KITTI benchmark.



قيم البحث

اقرأ أيضاً

While self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches, violations of the static world assumption can still lead to erroneous depth predictions of traffic participants, posin g a potential safety issue. In this paper, we present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework. In particular, we show how radar can be used during training as weak supervision signal, as well as an extra input to enhance the estimation robustness at inference time. Since automotive radars are readily available, this allows to collect training data from a variety of existing vehicles. Moreover, by filtering and expanding the signal to make it compatible with learning-based approaches, we address radar inherent issues, such as noise and sparsity. With R4Dyn we are able to overcome a major limitation of self-supervised depth estimation, i.e. the prediction of traffic participants. We substantially improve the estimation on dynamic objects, such as cars by 37% on the challenging nuScenes dataset, hence demonstrating that radar is a valuable additional sensor for monocular depth estimation in autonomous vehicles. Additionally, we plan on making the code publicly available.
We present an end-to-end joint training framework that explicitly models 6-DoF motion of multiple dynamic objects, ego-motion and depth in a monocular camera setup without supervision. Our technical contributions are three-fold. First, we highlight t he fundamental difference between inverse and forward projection while modeling the individual motion of each rigid object, and propose a geometrically correct projection pipeline using a neural forward projection module. Second, we design a unified instance-aware photometric and geometric consistency loss that holistically imposes self-supervisory signals for every background and object region. Lastly, we introduce a general-purpose auto-annotation scheme using any off-the-shelf instance segmentation and optical flow models to produce video instance segmentation maps that will be utilized as input to our training pipeline. These proposed elements are validated in a detailed ablation study. Through extensive experiments conducted on the KITTI and Cityscapes dataset, our framework is shown to outperform the state-of-the-art depth and motion estimation methods. Our code, dataset, and models are available at https://github.com/SeokjuLee/Insta-DM .
We present a generalised self-supervised learning approach for monocular estimation of the real depth across scenes with diverse depth ranges from 1--100s of meters. Existing supervised methods for monocular depth estimation require accurate depth me asurements for training. This limitation has led to the introduction of self-supervised methods that are trained on stereo image pairs with a fixed camera baseline to estimate disparity which is transformed to depth given known calibration. Self-supervised approaches have demonstrated impressive results but do not generalise to scenes with different depth ranges or camera baselines. In this paper, we introduce RealMonoDepth a self-supervised monocular depth estimation approach which learns to estimate the real scene depth for a diverse range of indoor and outdoor scenes. A novel loss function with respect to the true scene depth based on relative depth scaling and warping is proposed. This allows self-supervised training of a single network with multiple data sets for scenes with diverse depth ranges from both stereo pair and in the wild moving camera data sets. A comprehensive performance evaluation across five benchmark data sets demonstrates that RealMonoDepth provides a single trained network which generalises depth estimation across indoor and outdoor scenes, consistently outperforming previous self-supervised approaches.
343 - Yuan Yuan , Yueming Lyu , Xi Shen 2019
In weakly-supervised temporal action localization, previous works have failed to locate dense and integral regions for each entire action due to the overestimation of the most salient regions. To alleviate this issue, we propose a marginalized averag e attentional network (MAAN) to suppress the dominant response of the most salient regions in a principled manner. The MAAN employs a novel marginalized average aggregation (MAA) module and learns a set of latent discriminative probabilities in an end-to-end fashion. MAA samples multiple subsets from the video snippet features according to a set of latent discriminative probabilities and takes the expectation over all the averaged subset features. Theoretically, we prove that the MAA module with learned latent discriminative probabilities successfully reduces the difference in responses between the most salient regions and the others. Therefore, MAAN is able to generate better class activation sequences and identify dense and integral action regions in the videos. Moreover, we propose a fast algorithm to reduce the complexity of constructing MAA from O($2^T$) to O($T^2$). Extensive experiments on two large-scale video datasets show that our MAAN achieves superior performance on weakly-supervised temporal action localization
Robot warehouse automation has attracted significant interest in recent years, perhaps most visibly in the Amazon Picking Challenge (APC). A fully autonomous warehouse pick-and-place system requires robust vision that reliably recognizes and locates objects amid cluttered environments, self-occlusions, sensor noise, and a large variety of objects. In this paper we present an approach that leverages multi-view RGB-D data and self-supervised, data-driven learning to overcome those difficulties. The approach was part of the MIT-Princeton Team system that took 3rd- and 4th- place in the stowing and picking tasks, respectively at APC 2016. In the proposed approach, we segment and label multiple views of a scene with a fully convolutional neural network, and then fit pre-scanned 3D object models to the resulting segmentation to get the 6D object pose. Training a deep neural network for segmentation typically requires a large amount of training data. We propose a self-supervised method to generate a large labeled dataset without tedious manual segmentation. We demonstrate that our system can reliably estimate the 6D pose of objects under a variety of scenarios. All code, data, and benchmarks are available at http://apc.cs.princeton.edu/

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا