ﻻ يوجد ملخص باللغة العربية
Lee-Wick-like scalar model near a Dirichlet plate is considered in this work. The modified propagator for the scalar field due to the presence of a Dirichlet boundary is computed, and the interaction between the plate and a point-like scalar charge is analysed. The non-validity of the image method is investigated and the results are compared with the corresponding ones obtained for the Lee-Wick gauge field and for the standard Klein-Gordon field.
We construct a modification of the standard model which stabilizes the Higgs mass against quadratically divergent radiative corrections, using ideas originally discussed by Lee and Wick in the context of a finite theory of quantum electrodynamics. Th
Using a superfield generalization of the tadpole method, we study the one-loop effective potential for a Wess Zumino model modified by a higher-derivative term, inspired by the Lee-Wick model. The one-loop K{a}hlerian potential is also obtained by ot
In quantum mechanics the deterministic property of classical physics is an emergent phenomenon appropriate only on macroscopic scales. Lee and Wick introduced Lorentz invariant quantum theories where causality is an emergent phenomenon appropriate fo
The Lee-Wick electrodynamics in the vicinity of a conducting plate is investigated. The propagator for the gauge field is calculated and the interaction between the plate and a point-like electric charge is computed. The boundary condition imposed on
In this paper we study the ultraviolet and infrared behaviour of the self energy of a point-like charge in the vector and scalar Lee-Wick electrodynamics in a $d+1$ dimensional space time. It is shown that in the vector case, the self energy is stric