ﻻ يوجد ملخص باللغة العربية
In tasks such as surveying or monitoring remote regions, an autonomous robot must move while transmitting data over a wireless network with unknown, position-dependent transmission rates. For such a robot, this paper considers the problem of transmitting a data buffer in minimum time, while possibly also navigating towards a goal position. Two approaches are proposed, each consisting of a machine-learning component that estimates the rate function from samples; and of an optimal-control component that moves the robot given the current rate function estimate. Simple obstacle avoidance is performed for the case without a goal position. In extensive simulations, these methods achieve competitive performance compared to known-rate and unknown-rate baselines. A real indoor experiment is provided in which a Parrot AR.Drone 2 successfully learns to transmit the buffer.
In this paper, we present the Role Playing Learning (RPL) scheme for a mobile robot to navigate socially with its human companion in populated environments. Neural networks (NN) are constructed to parameterize a stochastic policy that directly maps s
When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or guide the robot. The state-of-the-art treats these interactions as disturbances that the robot should reject or avoid. At best, th
Mobility in an effective and socially-compliant manner is an essential yet challenging task for robots operating in crowded spaces. Recent works have shown the power of deep reinforcement learning techniques to learn socially cooperative policies. Ho
We present a novel Deep Reinforcement Learning (DRL) based policy to compute dynamically feasible and spatially aware velocities for a robot navigating among mobile obstacles. Our approach combines the benefits of the Dynamic Window Approach (DWA) in
In recent years, reinforcement learning and learning-based control -- as well as the study of their safety, crucial for deployment in real-world robots -- have gained significant traction. However, to adequately gauge the progress and applicability o