ﻻ يوجد ملخص باللغة العربية
We show how to count and randomly generate finitely generated subgroups of the modular group $textsf{PSL}(2,mathbb{Z})$ of a given isomorphism type. We also prove that almost malnormality and non-parabolicity are negligible properties for these subgroups. The combinatorial methods developed to achieve these results bring to light a natural map, which associates with any finitely generated subgroup of $textsf{PSL}(2,mathbb{Z})$ a graph which we call its silhouette, and which can be interpreted as a conjugacy class of free finite index subgroups of $textsf{PSL}(2,mathbb{Z})$.
We count the finitely generated subgroups of the modular group $textsf{PSL}(2,mathbb{Z})$. More precisely: each such subgroup $H$ can be represented by its Stallings graph $Gamma(H)$, we consider the number of vertices of $Gamma(H)$ to be the size of
Asymptotic properties of finitely generated subgroups of free groups, and of finite group presentations, can be considered in several fashions, depending on the way these objects are represented and on the distribution assumed on these representation
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma
We show that finitely-generated, purely pseudo-Anosov subgroups of the genus-2 Goeritz group are convex cocompact in the genus-2 mapping class group.
Let $A$ be the ring of elements in an algebraic function field $K$ over a finite field $F_q$ which are integral outside a fixed place $infty$. In an earlier paper we have shown that the Drinfeld modular group $G=GL_2(A)$ has automorphisms which map c