ﻻ يوجد ملخص باللغة العربية
Frequency-modulated diode laser transient absorption spectra of the ethynyl radical have been recorded at wavelengths close to 1.66 $mu$m. The observed spectrum includes strong, regular, line patterns. The two main bands observed originate in the ground $tilde{X},^2Sigma^+$ state and its first excited bending vibrational level of $^2Pi$ symmetry. The upper states, of $^2Sigma^+$ symmetry at 6055.6 cm$^{-1}$ and $^2Pi$ symmetry at 6413.5 cm$^{-1}$, respectively, had not previously been observed and the data were analyzed in terms of an effective Hamiltonian representing their rotational and fine structure levels to derive parameters which can be used to calculate rotational levels up to J = 37/2 for the $^2Pi$ level and J = 29/2 for the $^2Sigma$ one. Additionally, a weaker series of lines have been assigned to absorption from the second excited bending, (020), level of $^2Sigma$ symmetry, to a previously observed state of $^2Pi$ symmetry near 6819 cm$^{-1}$. These strong absorption bands at convenient near-IR laser wavelengths will be useful for monitoring CCH radicals in chemical systems.
Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C$_2$H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer
We report the observation and analysis of spectra in part of the near-infrared spectrum of C$_2$H, originating in rotational levels in the ground and lowest two excited bending vibrational levels of the ground $tilde{X},^2Sigma^+$ state. In the analy
We studied several representative circumstellar disks surrounding the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau at (sub-)millimeter wavelengths in lines of CCH. Our aim is to characterize photochemistry in the heavily UV-irradia
We report measurements of the Diffuse Galactic Light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95-1.65 {mu}m by the Cosmic Infrared Background ExpeRiment (CIBER). Using the low-resolution spectrometer (LRS) calibrated for a
Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ioniz