ﻻ يوجد ملخص باللغة العربية
The optical wireless communication (OWC) with the intensity modulation (IM), requires the modulated radio frequency (RF) signal to be real and non-negative. To satisfy the requirements, this paper proposes two types of mixed orthogonal frequency division multiplexing (X-OFDM) waveform. The Hermitian symmetry (HS) character of the sub-carriers in the frequency domain, guarantees the signal in the time domain to be real, which reduces the spectral efficiency to $1/2$. For the odd sub-carriers in the frequency domain, the signal in the time domain after the inverse fast fourier transform (IFFT) is antisymmetric. For the even sub-carriers in the frequency domain, the signal in the time domain after the IFFT is symmetric. Based on the antisymmetric and symmetric characters, the two types of X-OFDM waveform are designed to guarantee the signal in the time domain to be non-negative, where the direct current (DC) bias is not needed. With $N$ sub-carriers in the frequency domain, the generated signal in the time domain has $3N/2$ points, which further reduces the spectral efficiency to $1/3 = 1/2 times 2/3$. The numerical simulations show that, the two types of X-OFDM waveform greatly enhance the power efficiency considering the OWC channel with the signal-dependent noise and/or the signal-independent noise.
Some new properties of the chaotic signal have been implemented in communication system applications recently. However, due to the broadband property of the chaotic signal, it is very difficult for a practical transducer or antenna to convert such a
In this study, we propose an approach to constructing on-off keying (OOK) symbols for wake-up radios (WURs) by using sequences in the frequency domain. The proposed method enables orthogonal multiplexing of wake-up signals (WUSs) and orthogonal frequ
Faster-than-Nyquist (FTN) signal achieves higher spectral efficiency and capacity compared to Nyquist signal due to its smaller pulse interval or narrower subcarrier spacing. Shannon limit typically defines the upper-limit capacity of Nyquist signal.
In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/F
This paper reports a detailed experimental characterization of optical performances of Visible Light Communication (VLC) system using a real traffic light for ultra-low latency, infrastructure-to-vehicle (I2V) communications for intelligent transport