ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction for the Dirac-Coulomb propagator

97   0   0.0 ( 0 )
 نشر من قبل Dean Baskin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dirac equation in $mathbb{R}^{1,3}$ with potential Z/r is a relativistic field equation modeling the hydrogen atom. We analyze the singularity structure of the propagator for this equation, showing that the singularities of the Schwartz kernel of the propagator are along an expanding spherical wave away from rays that miss the potential singularity at the origin, but also may include an additional spherical wave of diffracted singularities emanating from the origin. This diffracted wavefront is 1-0 derivatives smoother than the main singularities and is a conormal singularity.



قيم البحث

اقرأ أيضاً

We construct the propagator of the massless Dirac operator $W$ on a closed Riemannian 3-manifold as the sum of two invariantly defined oscillatory integrals, global in space and in time, with distinguished complex-valued phase functions. The two osci llatory integrals -- the positive and the negative propagators -- correspond to positive and negative eigenvalues of $W$, respectively. This enables us to provide a global invariant definition of the full symbols of the propagators (scalar matrix-functions on the cotangent bundle), a closed formula for the principal symbols and an algorithm for the explicit calculation of all their homogeneous components. Furthermore, we obtain small time expansions for principal and subprincipal symbols of the propagators in terms of geometric invariants. Lastly, we use our results to compute the third local Weyl coefficients in the asymptotic expansion of the eigenvalue counting functions of $W$.
We prove $L^p$ lower bounds for Coulomb energy for radially symmetric functions in $dot H^s(R^3)$ with $frac 12 <s<frac{3}{2}$. In case $frac 12 <s leq 1$ we show that the lower bounds are sharp.
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t o a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
We are concerned with the suitability of the main models of compressible fluid dynamics for the Lighthill problem for shock diffraction by a convex corned wedge, by studying the regularity of solutions of the problem, which can be formulated as a fre e boundary problem. In this paper, we prove that there is no regular solution that is subsonic up to the wedge corner for potential flow. This indicates that, if the solution is subsonic at the wedge corner, at least a characteristic discontinuity (vortex sheet or entropy wave) is expected to be generated, which is consistent with the experimental and computational results. Therefore, the potential flow equation is not suitable for the Lighthill problem so that the compressible Euler system must be considered. In order to achieve the non-existence result, a weak maximum principle for the solution is established, and several other mathematical techniques are developed. The methods and techniques developed here are also useful to the other problems with similar difficulties.
98 - William Borrelli 2020
In this paper we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding and solutions are found by variational methods. Moreover, we prove also prove smoothness and exponential decay at infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا