ترغب بنشر مسار تعليمي؟ اضغط هنا

RELICS-DP7: Spectroscopic Confirmation of a Dichromatic Primeval Galaxy at z ~ 7

123   0   0.0 ( 0 )
 نشر من قبل Debora Pelliccia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a spectroscopically-confirmed strong Lyman-$alpha$ emitter at $z=7.0281pm0.0003$, observed as part of the Reionization Cluster Lensing Survey (RELICS). This galaxy, dubbed Dichromatic Primeval Galaxy at $zsim7$ (DP7), shows two distinct components. While fairly unremarkable in terms of its ultraviolet (UV) luminosity ($sim0.3L^{ast}_{UV}$, where $L^{ast}_{UV}$ is the characteristic luminosity), DP7 has one of the highest observed Lyman-$alpha$ equivalent widths (EWs) among Lyman-$alpha$ emitters at $z>6$ ($>200$ Angstrom in the rest frame). The strong Lyman-$alpha$ emission generally suggests a young metal-poor, low-dust galaxy; however, we find that the UV slope $beta$ of the galaxy as a whole is redder than typical star-forming galaxies at these redshifts, $-1.13pm 0.84$, likely indicating, on average, a considerable amount of dust obscuration, or an older stellar population. When we measure $beta$ for the two components separately, however, we find evidence of differing UV colors, suggesting two separate stellar populations. Also, we find that Lyman-$alpha$ is spatially extended and likely larger than the galaxy size, hinting to the possible existence of a Lyman-$alpha$ halo. Rejuvenation or merging events could explain these results. Either scenario requires an extreme stellar population, possibly including a component of Population III stars, or an obscured Active Galactic Nucleus. DP7, with its low UV luminosity and high Lyman-$alpha$ EW, represents the typical galaxies that are thought to be the major contribution to the reionization of the Universe, and for this reason DP7 is an excellent target for follow-up with the James Webb Space Telescope.



قيم البحث

اقرأ أيضاً

We present deep spectroscopic follow-up observations of the Bremer Deep Field (BDF) where the two $zsim$7 bright Ly$alpha$ emitters (LAE) BDF521 and BDF3299 were previously discovered by Vanzella et al. (2011) and where a factor of $sim$3-4 overdensi ty of faint LBGs has been found by Castellano et al. (2016). We confirm a new bright Ly$alpha$ emitter, BDF2195, at the same redshift of BDF521, $z=7.008$, and at only $sim$90 kpc physical distance from it, confirming that the BDF area is likely an overdense, reionized region. A quantitative assessment of the Ly$alpha$ fraction shows that the number of detected bright emitters is much higher than the average found at z$sim$7, suggesting a high Ly$alpha$ transmission through the inter-galactic medium (IGM). However, the line visibility from fainter galaxies is at odds with this finding, since no Ly$alpha$ emission is found in any of the observed candidates with $M_{UV}>$-20.25. This discrepancy can be understood either if some mechanism prevents Ly$alpha$ emission from fainter galaxies within the ionized bubbles from reaching the observer, or if faint galaxies are located outside the reionized area and bright LAEs are solely responsible for the creation of their own HII regions. A thorough assessment of the nature of the BDF region and of its sources of re-ionizing radiation will be made possible by JWST spectroscopic capabilities.
211 - M. D. Lehnert 2010
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
We report the spectroscopic confirmation of a new protocluster in the COSMOS field at $z$ $sim$ 2.2, COSMOS Cluster 2.2 (CC2.2), originally identified as an overdensity of narrowband selected H$alpha$ emitting candidates. With only two masks of Keck/ MOSFIRE near-IR spectroscopy in both $H$ ($sim$ 1.47-1.81 $mu$m) and $K$ ($sim$ 1.92-2.40 $mu$m) bands ($sim$ 1.5 hour each), we confirm 35 unique protocluster members with at least two emission lines detected with S/N $>$ 3. Combined with 12 extra members from the zCOSMOS-deep spectroscopic survey (47 in total), we estimate a mean redshift and a line-of-sight velocity dispersion of $z_{mean}$=2.23224 $pm$ 0.00101 and $sigma_{los}$=645 $pm$ 69 km s$^{-1}$ for this protocluster, respectively. Assuming virialization and spherical symmetry for the system, we estimate a total mass of $M_{vir}$ $sim$ $(1-2) times$10$^{14}$ $M_{odot}$ for the structure. We evaluate a number density enhancement of $delta_{g}$ $sim$ 7 for this system and we argue that the structure is likely not fully virialized at $z$ $sim$ 2.2. However, in a spherical collapse model, $delta_{g}$ is expected to grow to a linear matter enhancement of $sim$ 1.9 by $z$=0, exceeding the collapse threshold of 1.69, and leading to a fully collapsed and virialized Coma-type structure with a total mass of $M_{dyn}$($z$=0) $sim$ 9.2$times$10$^{14}$ $M_{odot}$ by now. This observationally efficient confirmation suggests that large narrowband emission-line galaxy surveys, when combined with ancillary photometric data, can be used to effectively trace the large-scale structure and protoclusters at a time when they are mostly dominated by star-forming galaxies.
56 - Daniel Stern 2003
We report the discovery of a galaxy overdensity at z=1.11 associated with the z=1.110 high-redshift radio galaxy MG0442+0202. The group, CL0442+0202, was found in a near-infrared survey of z>1 radio galaxies undertaken to identify spatially-coinciden t regions with a high density of objects red in I-K color, typical of z>1 elliptical galaxies. Spectroscopic observations from the Keck telescope reveal five galaxies within 35 of MG0442+0202 at 1.10<z<1.11. These member galaxies have broad-band colors and optical spectra consistent with passively-evolving elliptical galaxies formed at high redshift. A 45ks Chandra X-Ray Observatory observation detects the radio galaxy and four point sources within 15 of the radio galaxy, corresponding to a surface density two orders of magnitude higher than average for X-ray sources at these flux levels, S(0.5-2keV) > 5e-16 erg/cm2/s. One of these point sources is identified with a radio-quiet, typeII quasar at z=1.863, akin to sources recently reported in deep Chandra surveys. The limit on an extended hot intracluster medium in the Chandra data is S(1-6keV) < 1.9e-15 erg/cm2/s (3-sigma, 30 radius aperture). Though the X-ray observations do not confirm the existence of a massive, bound cluster at z>1, the success of the optical/near-infrared targeting of early-type systems near the radio galaxy validates searches using radio galaxies as beacons for high-redshift large-scale structure. We interpret CL0442+0202 to be a massive cluster in the process of formation.
We present Gemini and Keck spectroscopic redshifts and velocity dispersions for twenty clusters detected via the Sunyaev-Zeldovich (SZ) effect by the Planck space mission, with estimated masses in the range $2.3 times 10^{14} M_{odot} < M < 9.4 times 10^{14} M_{odot}$. Cluster members were selected for spectroscopic follow-up with Palomar, Gemini and Keck optical and (in some cases) infrared imaging. Seven cluster redshifts were measured for the first time with this observing campaign, including one of the most distant Planck clusters confirmed to date, at $z=0.782pm0.010$, PSZ2 G085.95+25.23. The spectroscopic redshift catalogs of members of each confirmed cluster are included as on-line tables. We show the galaxy redshift distributions and measure the cluster velocity dispersions. The cluster velocity dispersions obtained in this paper were used in a companion paper to measure the Planck mass bias and to constrain the cluster velocity bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا