ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely deep 150 MHz source counts from the LoTSS Deep Fields

98   0   0.0 ( 0 )
 نشر من قبل Soumyajit Mandal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the advent of new generation low-frequency telescopes, such as the LOw Frequency ARray (LOFAR), and improved calibration techniques, we have now started to unveil the sub GHz radio sky with unprecedented depth and sensitivity. The LOFAR Two Meter Sky Survey (LoTSS) is an ongoing project in which the whole northern radio sky will be observed at 150 MHz with a sensitivity better than 100 $mu$Jy beam$^{-1}$ at a resolution of asec{6}. Additionally, deeper observations are planned to cover smaller areas with higher sensitivity. The Lockman Hole, the Bootes and the Elais-N1 regions are among the most well known northern extra-galactic fields, and the deepest of the LoTSS Deep Fields so far. We exploit these deep observations to derive the deepest radio source counts at 150~MHz to date. Our counts are in broad agreement with those from the literature, and show the well known upturn at $leq$ few mJy, mainly associated with the emergence of the star-forming galaxy population. More interestingly, our counts show for the first time a very pronounced drop around S$sim$2 mJy, which results in a prominent `bump at sub-mJy flux densities. Such a feature was not observed in previous counts determinations (neither at 150 MHz nor at higher frequency). While sample variance can play a role in explaining the observed discrepancies, we believe this is mostly the result of a careful analysis aimed at deblending confused sources and removing spurious sources and artifacts from the radio catalogues. This `drop and bump feature cannot be reproduced by any of the existing state-of-the-art evolutionary models, and appears to be associated with a deficiency of AGN at intermediate redshift ($1<z<2$) and an excess of low-redshift ($z<1$) galaxies and/or AGN.



قيم البحث

اقرأ أيضاً

We present the first wide area (19 deg$^2$), deep ($approx120-150$ {mu}Jy beam$^{-1}$), high resolution ($5.6 times 7.4$ arcsec) LOFAR High Band Antenna image of the Bootes field made at 130-169 MHz. This image is at least an order of magnitude deepe r and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6276 sources detected over an area of $19$,deg$^2$, with a peak flux density threshold of $5sigma$. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150 MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey (S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic variance and also to ta ke advantage of deep coextensive coverage in multiple bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS, S-CANDELS was carried out within five widely separated extragalactic fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon the existing coverage of these fields from the Spitzer Extended Deep Survey (SEDS) by increasing the integration time from 12 hours to a total of 50 hours but within a smaller area, 0.16 square degrees. The additional depth significantly increases the survey completeness at faint magnitudes. This paper describes the S-CANDELS survey design, processing, and publicly-available data products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by S-CANDELS are consistent with models based on known galaxy populations. The increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a significant additional contribution from discrete sources to the diffuse Cosmic Infrared Background (CIB). Thus it remains true that only roughly half of the estimated CIB flux from COBE/DIRBE is resolved.
Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mecha nism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage and `Toothbrush relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$sigma$ significance level, supports the spectral steepening previously found in the `Sausage and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
We report extremely faint 144 MHz radio emission from two gravitationally lensed quasars, SDSS J1004+4112 (z = 1.730) and SDSS J2222+2745 (z = 2.803), using the LOFAR Two Metre Sky Survey (LoTSS) data release 2. After correcting for the lensing magni fications, the two objects have intrinsic flux-densities of 13+/-2 and 58+/-6 uJy, respectively, corresponding to 144 MHz rest-frame luminosities of 10^(23.2+/-0.2) and 10^(24.42+/-0.05) W / Hz, respectively. In the case of SDSS J1004+4112, the intrinsic flux density is close to the confusion limit of LoTSS, making this radio source the faintest to be detected thus far at low frequencies, and the lowest luminosity known at z > 0.65. Under the assumption that all of the radio emission is due to star-formation processes, the quasar host galaxies are predicted to have star-formation rates of 5.5^(+1.8)_(-1.4) and 73^(+34)_(-22) M / yr, respectively. Further multi-wavelength observations at higher angular resolution will be needed to determine if any of the detected radio emission is due to weak jets associated with the quasars.
We have conducted a deep survey (with a central rms of $55mutextrm{Jy}$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bootes field, with an angular resolution of $3.98^{}times6.45^{}$, and obtained a sample of 10091 radio sources ($5sig ma$ limit) over an area of $20:textrm{deg}^{2}$. The astrometry and flux scale accuracy of our source catalog is investigated. The resolution bias, incompleteness and other systematic effects that could affect our source counts are discussed and accounted for. The derived 150 MHz source counts present a flattening below sub-mJy flux densities, that is in agreement with previous results from high- and low- frequency surveys. This flattening has been argued to be due to an increasing contribution of star-forming galaxies and faint active galactic nuclei. Additionally, we use our observations to evaluate the contribution of cosmic variance to the scatter in source counts measurements. The latter is achieved by dividing our Bootes mosaic into 10 non-overlapping circular sectors, each one with an approximate area of $2:textrm{deg}^{2}.$ The counts in each sector are computed in the same way as done for the entire mosaic. By comparing the induced scatter with that of counts obtained from depth observations scaled to 150MHz, we find that the $1sigma$ scatter due to cosmic variance is larger than the Poissonian errors of the source counts, and it may explain the dispersion from previously reported depth source counts at flux densities $S<1,textrm{mJy}$. This work demonstrates the feasibility of achieving deep radio imaging at low-frequencies with LOFAR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا