Perturbative deflection angle, gravitational lensing in the strong field limit and the black hole shadow


الملخص بالإنكليزية

A perturbative method to compute the deflection angle of both timelike and null rays in arbitrary static and spherically symmetric spacetimes in the strong field limit is proposed. The result takes a quasi-series form of $(1-b_c/b)$ where $b$ is the impact parameter and $b_c$ is its critical value, with coefficients of the series explicitly given. This result also naturally takes into account the finite distance effect of both the source and detector, and allows to solve the apparent angles of the relativistic images in a more precise way. From this, the BH angular shadow size is expressed as a simple formula containing metric functions and particle/photon sphere radius. The magnification of the relativistic images were shown to diverge at different values of the source-detector angular coordinate difference, depending on the relation between the source and detector distance from the lens. To verify all these results, we then applied them to the Hayward BH spacetime, concentrating on the effects of its charge parameter $l$ and the asymptotic velocity $v$ of the signal. The BH shadow size were found to decrease slightly as $l$ increase to its critical value, and increase as $v$ decreases from light speed. For the deflection angle and the magnification of the images however, both the increase of $l$ and decrease of $v$ will increase their values.

تحميل البحث