ﻻ يوجد ملخص باللغة العربية
We present a Bayesian calibration algorithm for CMB observations as implemented within the global end-to-end BeyondPlanck (BP) framework, and apply this to the Planck Low Frequency Instrument (LFI) data. Following the most recent Planck analysis, we decompose the full time-dependent gain into a sum of three orthogonal components: One absolute calibration term, common to all detectors; one time-independent term that can vary between detectors; and one time-dependent component that is allowed to vary between one-hour pointing periods. Each term is then sampled conditionally on all other parameters in the global signal model through Gibbs sampling. The absolute calibration is sampled using only the orbital dipole as a reference source, while the two relative gain components are sampled using the full sky signal, including the orbital and Solar CMB dipoles, CMB fluctuations, and foreground contributions. We discuss various aspects of the data that influence gain estimation, including the dipole/polarization quadrupole degeneracy and anomalous jumps in the instrumental gain. Comparing our solution to previous pipelines, we find good agreement in general, with relative deviations of -0.84% (-0.67%) for 30 GHz, -0.14% (0.02%) for 44 GHz and -0.69% (-0.08%) for 70 GHz, compared to Planck 2018 (NPIPE). The deviations we find are within expected error bounds, and we attribute them to differences in data usage and general approach between the pipelines. In particular, the BP calibration is performed globally, resulting in better inter-frequency consistency. Additionally, WMAP observations are used actively in the BP analysis, which breaks degeneracies in the Planck data set and results in better agreement with WMAP. Although our presentation and algorithm are currently oriented toward LFI processing, the procedure is fully generalizable to other experiments.
A tremendous international effort is currently dedicated to observing the so-called $B$-modes of the Cosmic Microwave Background (CMB) polarisation. At the unprecedented sensitivity level that the new generation of CMB experiments aims to reach, ever
We present a Gibbs sampling solution to the map-making problem for CMB measurements, building on existing destriping methodology. Gibbs sampling breaks the computationally heavy destriping problem into two separate steps; noise filtering and map binn
A well-tested and validated Gibbs sampling code, that performs component separation and CMB power spectrum estimation, was applied to the {it WMAP} 5-yr data. Using a simple model consisting of CMB, noise, monopoles and dipoles, a ``per pixel low-fre
A great deal of experimental effort is currently being devoted to the precise measurements of the cosmic microwave background (CMB) sky in temperature and polarisation. Satellites, balloon-borne, and ground-based experiments scrutinize the CMB sky at
We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of companion papers that describe each result in fuller detail. Building directly on experience from ESAs Planck mission, we impl