ترغب بنشر مسار تعليمي؟ اضغط هنا

BeyondPlanck VII. Bayesian estimation of gain and absolute calibration for CMB experiments

62   0   0.0 ( 0 )
 نشر من قبل Eirik Gjerl{\\o}w
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a Bayesian calibration algorithm for CMB observations as implemented within the global end-to-end BeyondPlanck (BP) framework, and apply this to the Planck Low Frequency Instrument (LFI) data. Following the most recent Planck analysis, we decompose the full time-dependent gain into a sum of three orthogonal components: One absolute calibration term, common to all detectors; one time-independent term that can vary between detectors; and one time-dependent component that is allowed to vary between one-hour pointing periods. Each term is then sampled conditionally on all other parameters in the global signal model through Gibbs sampling. The absolute calibration is sampled using only the orbital dipole as a reference source, while the two relative gain components are sampled using the full sky signal, including the orbital and Solar CMB dipoles, CMB fluctuations, and foreground contributions. We discuss various aspects of the data that influence gain estimation, including the dipole/polarization quadrupole degeneracy and anomalous jumps in the instrumental gain. Comparing our solution to previous pipelines, we find good agreement in general, with relative deviations of -0.84% (-0.67%) for 30 GHz, -0.14% (0.02%) for 44 GHz and -0.69% (-0.08%) for 70 GHz, compared to Planck 2018 (NPIPE). The deviations we find are within expected error bounds, and we attribute them to differences in data usage and general approach between the pipelines. In particular, the BP calibration is performed globally, resulting in better inter-frequency consistency. Additionally, WMAP observations are used actively in the BP analysis, which breaks degeneracies in the Planck data set and results in better agreement with WMAP. Although our presentation and algorithm are currently oriented toward LFI processing, the procedure is fully generalizable to other experiments.



قيم البحث

اقرأ أيضاً

A tremendous international effort is currently dedicated to observing the so-called $B$-modes of the Cosmic Microwave Background (CMB) polarisation. At the unprecedented sensitivity level that the new generation of CMB experiments aims to reach, ever y uncontrolled instrumental systematic effect will potentially result in an analysis bias that is larger than the much sought-after CMB $B$-mode signal. The absolute calibration of the polarisation angle is particularly important in this sense, as any associated error will end up in a leakage from the much larger $E$ modes into $B$ modes. The Crab nebula (Tau A), with its bright microwave synchrotron emission, is one of the few objects in the sky that can be used as absolute polarisation calibrators. In this paper we review the best current constraints on its polarisation angle from 23 to 353 GHz, at typical angular scales for CMB observations, from WMAP, XPOL, Planck and NIKA data. These polarisation angle measurements are compatible with a constant angle of $-88.19,^circpm0.33,^circ$. We study the uncertainty on this mean angle, making different considerations on how to combine the individual measurement errors. For each of the cases, we study the potential impact on the CMB $B$-mode spectrum and on the recovered $r$ parameter, through a likelihood analysis. We find that current constraints on the Crab polarisation angle, assuming it is constant through microwave frequencies, allow to calibrate experiments with an accuracy enabling the measurement of $rsim0.01$. On the other hand, even under the most optimistic assumptions, current constraints will lead to an important limitation for the detection of $rsim10^{-3}$. New realistic measurement of the Crab nebula can change this situation, by strengthening the assumption of the consistency across microwave frequencies and reducing the combined error.
We present a Gibbs sampling solution to the map-making problem for CMB measurements, building on existing destriping methodology. Gibbs sampling breaks the computationally heavy destriping problem into two separate steps; noise filtering and map binn ing. Considered as two separate steps, both are computationally much cheaper than solving the combined problem. This provides a huge performance benefit as compared to traditional methods, and allows us for the first time to bring the destriping baseline length to a single sample. We apply the Gibbs procedure to simulated Planck 30 GHz data. We find that gaps in the time-ordered data are handled efficiently by filling them with simulated noise as part of the Gibbs process. The Gibbs procedure yields a chain of map samples, from which we may compute the posterior mean as a best-estimate map. The variation in the chain provides information on the correlated residual noise, without need to construct a full noise covariance matrix. However, if only a single maximum-likelihood frequency map estimate is required, we find that traditional conjugate gradient solvers converge much faster than a Gibbs sampler in terms of total number of iterations. The conceptual advantages of the Gibbs sampling approach lies in statistically well-defined error propagation and systematic error correction, and this methodology forms the conceptual basis for the map-making algorithm employed in the BeyondPlanck framework, which implements the first end-to-end Bayesian analysis pipeline for CMB observations.
130 - C. Dickinson 2009
A well-tested and validated Gibbs sampling code, that performs component separation and CMB power spectrum estimation, was applied to the {it WMAP} 5-yr data. Using a simple model consisting of CMB, noise, monopoles and dipoles, a ``per pixel low-fre quency power-law (fitting for both amplitude and spectral index), and a thermal dust template with fixed spectral index, we found that the low-$ell$ ($ell < 50$) CMB power spectrum is in good agreement with the published {it WMAP}5 results. Residual monopoles and dipoles were found to be small ($lesssim 3 mu$K) or negligible in the 5-yr data. We comprehensively tested the assumptions that were made about the foregrounds (e.g. dust spectral index, power-law spectral index prior, templates), and found that the CMB power spectrum was insensitive to these choices. We confirm the asymmetry of power between the north and south ecliptic hemispheres, which appears to be robust against foreground modeling. The map of low frequency spectral indices indicates a steeper spectrum on average ($beta=-2.97pm0.21$) relative to those found at low ($sim$GHz) frequencies.
A great deal of experimental effort is currently being devoted to the precise measurements of the cosmic microwave background (CMB) sky in temperature and polarisation. Satellites, balloon-borne, and ground-based experiments scrutinize the CMB sky at multiple scales, and therefore enable to investigate not only the evolution of the early Universe, but also its late-time physics with unprecedented accuracy. The pipeline leading from time ordered data as collected by the instrument to the final product is highly structured. Moreover, it has also to provide accurate estimates of statistical and systematic uncertainties connected to the specific experiment. In this paper, we review likelihood approaches targeted to the analysis of the CMB signal at different scales, and to the estimation of key cosmological parameters. We consider methods that analyze the data in the spatial (i.e., pixel-based) or harmonic domain. We highlight the most relevant aspects of each approach and compare their performance.
We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of companion papers that describe each result in fuller detail. Building directly on experience from ESAs Planck mission, we impl ement a complete end-to-end Bayesian analysis framework for the Planck Low Frequency Instrument (LFI) observations. The primary product is a joint posterior distribution P(omega|d), where omega represents the set of all free instrumental (gain, correlated noise, bandpass etc.), astrophysical (synchrotron, free-free, thermal dust emission etc.), and cosmological (CMB map, power spectrum etc.) parameters. Some notable advantages of this approach are seamless end-to-end propagation of uncertainties; accurate modeling of both astrophysical and instrumental effects in the most natural basis for each uncertain quantity; optimized computational costs with little or no need for intermediate human interaction between various analysis steps; and a complete overview of the entire analysis process within one single framework. As a practical demonstration of this framework, we focus in particular on low-l CMB polarization reconstruction, paying special attention to the LFI 44 GHz channel. We find evidence of significant residual systematic effects that are still not accounted for in the current processing, but must be addressed in future work. These include a break-down of the 1/f correlated noise model at 30 and 44 GHz, and scan-aligned stripes in the Southern Galactic hemisphere at 44 GHz. On the Northern hemisphere, however, we find that all results are consistent with the LCDM model, and we constrain the reionization optical depth to tau = 0.067 +/- 0.016, with a low-resolution chi-squared probability-to-exceed of 16%. The marginal CMB dipole amplitude is 3359.5 +/- 1.9 uK. (Abridged.)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا