ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of O stars in the tidal Magellanic Bridge: Stellar parameters, abundances, and feedback of the nearest metal-poor massive stars and their implication for the Magellanic System ecology

92   0   0.0 ( 0 )
 نشر من قبل Varsha Ramachandran
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Magellanic Bridge stretching between the SMC and LMC is the nearest tidally stripped intergalactic environment and has a low average metallicity of $Z~0.1Z_{odot}$. Here we report the first discovery of three O-type stars in the Bridge using archival spectra collected with FLAMES at ESO/VLT. We analyze the spectra using the PoWR models, which provide the physical parameters, ionizing photon fluxes, and surface abundances. This discovery suggests that the tidally stripped low density gas is capable of producing massive O stars and their ages imply ongoing star formation in the Bridge. The multi-epoch spectra indicate that all three O stars are binaries. Despite their spatial proximity to each other, these O stars are chemically distinct. One of them is a fast-rotating giant with nearly LMC-like abundances. The other two are main-sequence stars that rotate extremely slowly and are strongly metal depleted. This includes the most nitrogen-poor O star known up to date. Taking into account the previous analyses of B stars in the Bridge, we interpret the various metal abundances as the signature of a chemically inhomogeneous interstellar medium, suggesting that the gas might have accreted during multiple episodes of tidal interaction between the Clouds. Attributing the lowest derived metal content to the primordial gas, the time of initial formation of the Bridge may date back to several Gyr. Using the Gaia and Galex color-magnitude diagrams we roughly estimate the total number of O stars in the Bridge and their total ionizing radiation. Comparing with the energetics of the diffuse ISM, we find that the contribution of the hot stars to the ionizing radiation field in the Bridge is less than 10%, and conclude that the main sources of ionizing photons are leaks from the LMC and SMC. We estimate a lower limit for the fraction of ionizing radiation that escapes from these two dwarf galaxies.



قيم البحث

اقرأ أيضاً

The chemical abundances of a galaxys metal-poor stellar population can be used to investigate the earliest stages of its formation and chemical evolution. The Magellanic Clouds are the most massive of the Milky Ways satellite galaxies and are thought to have evolved in isolation until their recent accretion by the Milky Way. Unlike the Milky Ways less massive satellites, little is know about the Magellanic Clouds metal-poor stars. We have used the mid-infrared metal-poor star selection of Schlaufman & Casey (2014) and archival data to target nine LMC and four SMC giants for high-resolution Magellan/MIKE spectroscopy. These nine LMC giants with $-2.4lesssim[text{Fe/H}]lesssim-1.5$ and four SMC giants with $-2.6lesssim[text{Fe/H}]lesssim-2.0$ are the most metal-poor stars in the Magellanic Clouds yet subject to a comprehensive abundance analysis. While we find that at constant metallicity these stars are similar to Milky Way stars in their $alpha$, light, and iron-peak elemental abundances, both the LMC and SMC are enhanced relative to the Milky Way in the $r$-process element europium. These abundance offsets are highly significant, equivalent to $3.9sigma$ for the LMC, $2.7sigma$ for the SMC, and $5.0sigma$ for the complete Magellanic Cloud sample. We propose that the $r$-process enhancement of the Magellanic Clouds metal-poor stellar population is a result of the Magellanic Clouds isolated chemical evolution and long history of accretion from the cosmic web combined with $r$-process nucleosynthesis on a timescale longer than the core-collapse supernova timescale but shorter than or comparable to the thermonuclear (i.e., Type Ia) supernova timescale.
We study the formation of very metal-poor stars under protostellar radiative feedback effect. We use cosmological simulations to identify low-mass dark matter halos and star-forming gas clouds within them. We then follow protostar formation and the s ubsequent long-term mass accretion phase of over one million years using two-dimensional radiation-hydrodynamics simulations. We show that the critical physical process that sets the final mass is formation and expansion of a bipolar HII region. The process is similar to the formation of massive primordial stars, but radiation pressure exerted on dust grains also contributes to halting the accretion flow in the low-metallicity case. We find that the net feedback effect in the case with metallicity $Z = 10^{-2}~Z_{odot}$ is stronger than in the case with $Z sim 1~Z_{odot}$. With decreasing metallicity, the radiation pressure effect becomes weaker, but photoionization heating of the circumstellar gas is more efficient owing to the reduced dust attenuation. In the case with $Z = 10^{-2}~Z_{odot}$, the central star grows as massive as 200 solar-masses, similarly to the case of primordial star formation. We conclude that metal-poor stars with a few hundred solar masses can be formed by gas accretion despite the strong radiative feedback.
We present a three-dimensional analysis of a sample of 22 859 type $ab$ RR Lyrae stars in the Magellanic System from the OGLE-IV Collection of RR Lyrae stars. The distance to each object was calculated based on its photometric metallicity and a theor etical relation between color, absolute magnitude and metallicity. The LMC RR Lyrae distribution is very regular and does not show any substructures. We demonstrate that the bar found in previous studies may be an overdensity caused by blending and crowding effects. The halo is asymmetrical with a higher stellar density in its north-eastern area, which is also located closer to us. Triaxial ellipsoids were fitted to surfaces of a constant number density. Ellipsoids farther from the LMC center are less elongated and slightly rotated toward the SMC. The inclination and position angle change significantly with the $a$ axis size. The median axis ratio is $1:1.23:1.45$. The RR Lyrae distribution in the SMC has a very regular, ellipsoidal shape and does not show any substructures or asymmetries. All triaxial ellipsoids fitted to surfaces of a constant number density have virtually the same shape (axis ratio) and are elongated along the line of sight. The median axis ratio is $1:1.10:2.13$. The inclination angle is very small and thus the position angle is not well defined. We present the distribution of RR Lyrae stars in the Magellanic Bridge area, showing that the Magellanic Clouds halos overlap. A comparison of the distributions of RR Lyrae stars and Classical Cepheids shows that the former are significantly more spread and distributed regularly, while the latter are very clumped and form several distinct substructures.
160 - P. Bonifacio 2009
CONTEXT:The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data are, however, for giant stars which may have experienced internal mixing later . AIMS: We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turnoff stars. METHODS:VLT/UVES spectra at R ~45,000 and S/N~ 130 per pixel (330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. RESULTS: For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are ~0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are ~0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again ~0.4 dex higher than in giants of similar [Fe/H] (6 stars only). CONCLUSIONS:For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
Massive star evolution at low metallicity is closely connected to many fields in high-redshift astrophysics, but poorly understood. The Small Magellanic Cloud (SMC) is a unique laboratory to study this because of its metallicity of 0.2 Zsol, its prox imity, and because it is currently forming stars. We used a spectral type catalog in combination with GAIA magnitudes to calculate temperatures and luminosities of bright SMC stars. By comparing these with literature studies, we tested the validity of our method, and using GAIA data, we estimated the completeness of stars in the catalog as a function of luminosity. This allowed us to obtain a nearly complete view of the most luminous stars in the SMC. When then compared with stellar evolution predictions. We also calculated the extinction distribution, the ionizing photon production rate, and the star formation rate. Our results imply that the SMS hosts only 30 very luminous main-sequence stars (M > 40 Msol; L > 10^5 Lsol), which are far fewer than expected from the number of stars in the luminosity range 3*10^4 < L/Lsol < 3*10^5 and from the typically quoted star formation rate in the SMC. Even more striking, we find that for masses above M > 20 Msol, stars in the first half of their hydrogen-burning phase are almost absent. This mirrors a qualitatively similar peculiarity that is known for the Milky Way and Large Magellanic Cloud. This amounts to a lack of hydrogen-burning counterparts of helium-burning stars, which is more pronounced for higher luminosities. We argue that a declining star formation rate or a steep initial mass function are unlikely to be the sole explanations for the dearth of young bright stars. Instead, many of these stars might be embedded in their birth clouds, although observational evidence for this is weak. We discuss implications for cosmic reionization and the top end of the initial mass function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا