ﻻ يوجد ملخص باللغة العربية
We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only, which can be reused for downstream tasks such as action recognition. This task, however, is extremely challenging due to 1) the highly complex spatial-temporal information in videos; and 2) the lack of labeled data for training. Unlike the representation learning for static images, it is difficult to construct a suitable self-supervised task to well model both motion and appearance features. More recently, several attempts have been made to learn video representation through video playback speed prediction. However, it is non-trivial to obtain precise speed labels for the videos. More critically, the learnt models may tend to focus on motion pattern and thus may not learn appearance features well. In this paper, we observe that the relative playback speed is more consistent with motion pattern, and thus provide more effective and stable supervision for representation learning. Therefore, we propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels. In this way, we are able to well perceive speed and learn better motion features. Moreover, to ensure the learning of appearance features, we further propose an appearance-focused task, where we enforce the model to perceive the appearance difference between two video clips. We show that optimizing the two tasks jointly consistently improves the performance on two downstream tasks, namely action recognition and video retrieval. Remarkably, for action recognition on UCF101 dataset, we achieve 93.7% accuracy without the use of labeled data for pre-training, which outperforms the ImageNet supervised pre-trained model. Code and pre-trained models can be found at https://github.com/PeihaoChen/RSPNet.
In self-supervised spatio-temporal representation learning, the temporal resolution and long-short term characteristics are not yet fully explored, which limits representation capabilities of learned models. In this paper, we propose a novel self-sup
Inspired by the fact that human eyes continue to develop tracking ability in early and middle childhood, we propose to use tracking as a proxy task for a computer vision system to learn the visual representations. Modelled on the Catch game played by
We study self-supervised video representation learning, which is a challenging task due to 1) lack of labels for explicit supervision; 2) unstructured and noisy visual information. Existing methods mainly use contrastive loss with video clips as the
The study of object representations in computer vision has primarily focused on developing representations that are useful for image classification, object detection, or semantic segmentation as downstream tasks. In this work we aim to learn object r
One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categorie