ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster-Specific Predictions with Multi-Task Gaussian Processes

71   0   0.0 ( 0 )
 نشر من قبل Benjamin Guedj
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.



قيم البحث

اقرأ أيضاً

We investigate the problem of multiple time series forecasting, with the objective to improve multiple-step-ahead predictions. We propose a multi-task Gaussian process framework to simultaneously model batches of individuals with a common mean functi on and a specific covariance structure. This common mean is defined as a Gaussian process for which the hyper-posterior distribution is tractable. Therefore an EM algorithm can be derived for simultaneous hyper-parameters optimisation and hyper-posterior computation. Unlike previous approaches in the literature, we account for uncertainty and handle uncommon grids of observations while maintaining explicit formulations, by modelling the mean process in a non-parametric probabilistic framework. We also provide predictive formulas integrating this common mean process. This approach greatly improves the predictive performance far from observations, where information shared across individuals provides a relevant prior mean. Our overall algorithm is called textsc{Magma} (standing for Multi tAsk Gaussian processes with common MeAn), and publicly available as a R package. The quality of the mean process estimation, predictive performances, and comparisons to alternatives are assessed in various simulated scenarios and on real datasets.
Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealin g with large data sets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and especially for performing Bayesian model comparison between different covariance functions. We apply our techniques to both synthetic and real data and quantify the speed-up relative to using nested sampling to numerically evaluate model evidences.
The aim of this article is to present a novel parallelization method for temporal Gaussian process (GP) regression problems. The method allows for solving GP regression problems in logarithmic O(log N) time, where N is the number of time steps. Our a pproach uses the state-space representation of GPs which in its original form allows for linear O(N) time GP regression by leveraging the Kalman filtering and smoothing methods. By using a recently proposed parallelization method for Bayesian filters and smoothers, we are able to reduce the linear computational complexity of the temporal GP regression problems into logarithmic span complexity. This ensures logarithmic time complexity when run on parallel hardware such as a graphics processing unit (GPU). We experimentally demonstrate the computational benefits on simulated and real datasets via our open-source implementation leveraging the GPflow framework.
We present an end-to-end statistical framework for personalized, accurate, and minimally invasive modeling of female reproductive hormonal patterns. Reconstructing and forecasting the evolution of hormonal dynamics is a challenging task, but a critic al one to improve general understanding of the menstrual cycle and personalized detection of potential health issues. Our goal is to infer and forecast individual hormone daily levels over time, while accommodating pragmatic and minimally invasive measurement settings. To that end, our approach combines the power of probabilistic generative models (i.e., multi-task Gaussian processes) with the flexibility of neural networks (i.e., a dilated convolutional architecture) to learn complex temporal mappings. To attain accurate hormone level reconstruction with as little data as possible, we propose a sampling mechanism for optimal reconstruction accuracy with limited sampling budget. Our results show the validity of our proposed hormonal dynamic modeling framework, as it provides accurate predictive performance across different realistic sampling budgets and outperforms baselines methods.
Gaussian processes (GPs) are highly flexible function estimators used for geospatial analysis, nonparametric regression, and machine learning, but they are computationally infeasible for large datasets. Vecchia approximations of GPs have been used to enable fast evaluation of the likelihood for parameter inference. Here, we study Vecchia approximations of spatial predictions at observed and unobserved locations, including obtaining joint predictive distributions at large sets of locations. We consider a general Vecchia framework for GP predictions, which contains some novel and some existing special cases. We study the accuracy and computational properties of these approaches theoretically and numerically, proving that our new methods exhibit linear computational complexity in the total number of spatial locations. We show that certain choices within the framework can have a strong effect on uncertainty quantification and computational cost, which leads to specific recommendations on which methods are most suitable for various settings. We also apply our methods to a satellite dataset of chlorophyll fluorescence, showing that the new methods are faster or more accurate than existing methods, and reduce unrealistic artifacts in prediction maps.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا