The Stokes equation describes the motion of fluids when inertial forces are negligible compared to viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows. Parity violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetised and rotating fluids, in which parity (i.e. mirror reflection) symmetry is broken. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyze the effects of the parity violating viscosities on the Stokeslet solution, flow past a sphere or a bubble, and many-particle sedimentation. In all the cases we analyze parity violating viscosities give rise to an azimuthal flow even when the driving force is along the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared to a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation into a torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems.