ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Party Quantum Networks Created by Quantum Cloning

92   0   0.0 ( 0 )
 نشر من قبل Manish Shukla
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With progress in quantum technologies, the field of quantum networks has emerged as an important area of research. In the last few years, there has been substantial progress in understanding the correlations present in quantum networks. In this article, we study cloning as a prospective method to generate three party quantum networks which can be further used to create larger networks. We analyze various quantum network topologies that can be created using cloning transformations. This would be useful in the situations wherever the availability of entangled pairs is limited. In addition to that we focus on the problem of distinguishing networks created by cloning from those which are created by distributing independently generated entangled pairs. We find that there are several states which cannot be distinguished using the Finner inequalities in the standard way. For such states, we propose an extension to the existing Finner inequality for triangle networks by further increasing the number of observers from three to four or six depending on the network topology. This takes into account the additional correlations that exist in the case of cloned networks. In the last part of the article we have used tripartite mutual information to distinguish cloned networks from networks created by independent sources and have further used squashed entanglement as a measure to quantify the amount of dependence in the cloned networks.



قيم البحث

اقرأ أيضاً

We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
We develop a three-party quantum secret sharing protocol based on arbitrary dimensional quantum states. In contrast to the previous quantum secret sharing protocols, the sender can always control the state, just using local operations, for adjusting the correlation of measurement directions of three parties and thus there is no waste of resource due to the discord between the directions. Moreover, our protocol contains the hidden value which enables the sender to leak no information of secret key to the dishonest receiver until the last steps of the procedure.
Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement -- a highly non-classical correlation -- remained unexplored. Based on a multiphoton linear optics platform, we demonstrate quantum cloning of two photon entangled states for the first time. Remarkably our results show that one maximally entangled photon pair can be broadcast into two entangled pairs, both with state fidelities above 50%. Our results are a key step towards cloning of complex quantum systems, and are likely to provide new insights into quantum entanglement.
98 - S. Iblisdir , A. Acin , N. Gisin 2004
We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take $N$ identical replicas of a pure state in any dimension as input, and yield a collection o f clones with non-identical fidelities. As an example, if the clones are partitioned into a set of $M_A$ clones with fidelity $F^A$ and another set of $M_B$ clones with fidelity $F^B$, the trade-off between these fidelities is analyzed, and particular cases of optimal $N to M_A+M_B$ cloning machines are exhibited. We also present an optimal $1 to 1+1+1$ cloning machine, which is the first known example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.
108 - S. Iblisdir , A. Acin , N. Gisin 2005
We study machines that take N identical replicas of a pure qudit state as input and output a set of M_A clones of a given fidelity and another set of $M_B$ clones of another fidelity. The trade-off between these two fidelities is investigated, and nu merous examples of optimal N -> M_A+M_B cloning machines are exhibited using a generic method. A generalisation to more than two sets of clones is also discussed. Finally, an optical implementation of some such machines is proposed. This paper is an extended version of [xxx.arxiv.org/abs/quant-ph/0411179].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا