ﻻ يوجد ملخص باللغة العربية
This paper studies the moduli space of solutions to the Bogomolny equation on R^3 with a certain type of knot singularity. For technical reasons, I have to assume the monodromy along the meridian of the knot lies in (0, 1/8) or in (3/8, 1/2) and I dont know how to resolve this constraint. The main result of this paper is: a neighbourhood of a solution to the Bogomolny equations on R^3 with such knot singularity in the moduli space has an analytical structure. Moreover, certain solutions (that come from gluing a model solution with the knot singularity and classical regular solutions) have a neighbourhood in the moduli space that has a manifold structure.
We study the twisted knot module for the universal deformation of an ${rm SL}_2$-representation of a knot group, and introduce an associated $L$-function, which may be seen as an analogue of the algebraic $p$-adic $L$-function associated to the Selme
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is require
Strong and weak (1, 3) homotopies are equivalence relations on knot projections, defined by the first flat Reidemeister move and each of two different types of the third flat Reidemeister moves. In this paper, we introduce the cross chord number that
In this article, we study certain type of boundary behaviour of positive solutions of the heat equation on the upper half-space of $R^{n+1}$. We prove that the existence of the parabolic limit of a positive solution of the heat equation at a point in
We show that a small tree-decomposition of a knot diagram induces a small sphere-decomposition of the corresponding knot. This, in turn, implies that the knot admits a small essential planar meridional surface or a small bridge sphere. We use this to