ﻻ يوجد ملخص باللغة العربية
The existed theories and methods for calculating interfacial thermal conductance of solid-solid interface lead to diverse values that deviate from experimental measurements. In this letter, We propose a model to estimate the ITC at high temperature without comprehensive calculations, where the interface between two dissimilar solids can be treated as an amorphous thin layer and the coordination number density across interface becomes a key parameter. Our model predicts that the ITCs of various interfaces at 300K are in a narrow range: 10$^{7}$W m$^{-2}$K$^{-1}$ $sim $10$^{9}$ W m$^{-2}$ K$^{-1}$, which is in good agreement with the experimental measurement.
By employing first-principles metadynamics simulations, we explore the 300 K structures of solid hydrogen over the pressure range 150-300 GPa. At 200 GPa, we find the ambient-pressure disordered hexagonal close-packed (hcp) phase transited into an in
Adding thermal conductivity enhancements to increase thermal power in solid-liquid phase-change thermal energy storage modules compromises volumetric energy density and often times reduces the mass and volume of active phase change material (PCM) by
We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance, of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the surface states allowed in a
The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications such as wireless communication and radar systems. However, the performance and reliabili
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with differen