ﻻ يوجد ملخص باللغة العربية
A pair of quantum observables diagonal in the same incoherent basis can be measured jointly, so some coherence is obviously required for measurement incompatibility. Here we first observe that coherence in a single observable is linked to the diagonal elements of any observable jointly measurable with it, leading to a general criterion for the coherence needed for incompatibility. Specialising to the case where the second observable is incoherent (diagonal), we develop a concrete method for solving incompatibility problems, tractable even in large systems by analytical bounds, without resorting to numerical optimisation. We verify the consistency of our method by a quick proof of the known noise bound for mutually unbiased bases, and apply it to study emergent classicality in the spin-boson model of an N-qubit open quantum system. Finally, we formulate our theory in an operational resource-theoretic setting involving genuinely incoherent operations used previously in the literature, and show that if the coherence is insufficient to sustain incompatibility, the associated joint measurements have sequential implementations via incoherent instruments.
When the linear measurements of an instance of low-rank matrix recovery satisfy a restricted isometry property (RIP)---i.e. they are approximately norm-preserving---the problem is known to contain no spurious local minima, so exact recovery is guaran
Blockchain is built on a peer-to-peer network that relies on frequent communications among the distributively located nodes. In particular, the consensus mechanisms (CMs), which play a pivotal role in blockchain, are communication resource-demanding
We consider the question of characterising the incompatibility of sets of high-dimensional quantum measurements. We introduce the concept of measurement incompatibility in subspaces. That is, starting from a set of measurements that is incompatible,
One possible explanation for the proton form factor discrepancy is a contribution to the elastic electron-proton cross section from hard two-photon exchange (TPE), a typically neglected radiative correction. Hard TPE cannot be calculated in a model-i
We discuss the connection between the incompatibility of quantum measurements, as captured by the notion of joint measurability, and the violation of Bell inequalities. Specifically, we present explicitly a given a set of non jointly measurable POVMs