ﻻ يوجد ملخص باللغة العربية
At least a quarter of the warming that the Earth is experiencing today is due to anthropogenic methane emissions. There are multiple satellites in orbit and planned for launch in the next few years which can detect and quantify these emissions; however, to attribute methane emissions to their sources on the ground, a comprehensive database of the locations and characteristics of emission sources worldwide is essential. In this work, we develop deep learning algorithms that leverage freely available high-resolution aerial imagery to automatically detect oil and gas infrastructure, one of the largest contributors to global methane emissions. We use the best algorithm, which we call OGNet, together with expert review to identify the locations of oil refineries and petroleum terminals in the U.S. We show that OGNet detects many facilities which are not present in four standard public datasets of oil and gas infrastructure. All detected facilities are associated with characteristics known to contribute to methane emissions, including the infrastructure type and the number of storage tanks. The data curated and produced in this study is freely available at http://stanfordmlgroup.github.io/projects/ognet .
Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of hectares of forest resources and threatening the lives of people and animals. Of particular importance are risks to firefighters and operation
How do the neural networks distinguish two images? It is of critical importance to understand the matching mechanism of deep models for developing reliable intelligent systems for many risky visual applications such as surveillance and access control
Floods wreak havoc throughout the world, causing billions of dollars in damages, and uprooting communities, ecosystems and economies. Accurate and robust flood detection including delineating open water flood areas and identifying flood levels can ai
Semantic segmentation using fine-resolution remotely sensed images plays a critical role in many practical applications, such as urban planning, environmental protection, natural and anthropogenic landscape monitoring, etc. However, the automation of
Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access