ﻻ يوجد ملخص باللغة العربية
Online forecasting under a changing environment has been a problem of increasing importance in many real-world applications. In this paper, we consider the meta-algorithm presented in citet{zhang2017dynamic} combined with different subroutines. We show that an expected cumulative error of order $tilde{O}(n^{1/3} C_n^{2/3})$ can be obtained for non-stationary online linear regression where the total variation of parameter sequence is bounded by $C_n$. Our paper extends the result of online forecasting of one-dimensional time-series as proposed in cite{baby2019online} to general $d$-dimensional non-stationary linear regression. We improve the rate $O(sqrt{n C_n})$ obtained by Zhang et al. 2017 and Besbes et al. 2015. We further extend our analysis to non-stationary online kernel regression. Similar to the non-stationary online regression case, we use the meta-procedure of Zhang et al. 2017 combined with Kernel-AWV (Jezequel et al. 2020) to achieve an expected cumulative controlled by the effective dimension of the RKHS and the total variation of the sequence. To the best of our knowledge, this work is the first extension of non-stationary online regression to non-stationary kernel regression. Lastly, we evaluate our method empirically with several existing benchmarks and also compare it with the theoretical bound obtained in this paper.
We consider the setting of online logistic regression and consider the regret with respect to the 2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has logarithmic regret in the number of samples (denoted n) n
It has been recently shown in the literature that the sample averages from online learning experiments are biased when used to estimate the mean reward. To correct the bias, off-policy evaluation methods, including importance sampling and doubly robu
Distributed computing offers a high degree of flexibility to accommodate modern learning constraints and the ever increasing size of datasets involved in massive data issues. Drawing inspiration from the theory of distributed computation models devel
We consider the online version of the isotonic regression problem. Given a set of linearly ordered points (e.g., on the real line), the learner must predict labels sequentially at adversarially chosen positions and is evaluated by her total squared l
Single index models provide an effective dimension reduction tool in regression, especially for high dimensional data, by projecting a general multivariate predictor onto a direction vector. We propose a novel single-index model for regression models